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Abstract

We provide empirical evidence and a theoretical analysis of the influence of

production network diversification on countries’ economic performance, reflected

in their GDP per-capita levels. Using a panel sample of 55 countries, we find a

strong positive association between the number of active links in the input-output

network of a country and its GDP per-capita over time, even after controlling for

several country characteristics. To complement and scrutinize our empirical finding,

we advance economic theory on the link between network diversity and economic

development by proposing a multisector model with input-output linkages, non-

unitary elasticity of substitution in production, and a love of diversification in the

bundle of intermediate inputs that rationalize our empirical results. In the long run,

when labor and intermediates are substitute inputs, denser production structures

enjoy higher productivity in the intermediate input bundle and also amplify positive

shocks more strongly than less connected networks. Hence, our model predicts that

economies with denser production structures display higher income.
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1 Introduction

One of the key features of a country’s economy is how its production system operates and

what it generates. Input-output (I-O) tables have been historically and widely used to

map the interconnections of productive systems and to measure the economic impacts

of changes in their structures. I-O data allow us to observe the interlinkages between

industries and sectors, from which we can assess how well or poorly diversified the

productive systems of an economy are. By analyzing these interlinkages, in this paper,

we provide empirical and theoretical analyses of how a denser production network

structure can support higher levels of economic output in a country. In particular, we

explore the question: How important is the organization of production in explaining

the large differences in income per capita observed across countries? This is a long

standing question in the economic development literature (see, for example, Hirschman,

1958; Hidalgo, Klinger, Barabási, and Hausmann, 2007; Jones, 2011; McNerney, Savoie,

Caravelli, Carvalho, and Farmer, 2022) because its answer has important implications for

industrial policies and for the development of nations and regions (see, for example, Liu,

2019; Choi and Levchenko, 2021).

In this paper, we study the relationship between the diversification of intermediate

inputs traded across economic sectors of a country and the country’s economic perfor-

mance measured by its level of GDP per capita. We start by exploring empirical evidence

on a panel of 55 countries for the period 1995-2011; using this evidence, we then propose

a formal theoretical model displaying a network of producers trading intermediate inputs.

Our empirical results and theoretical construct present novel evidence on the effect that

intermediate input diversification can have on GDP per capita levels. Empirically, we

document a strong fact using different specifications: countries with higher production

network density—that is, a higher number of non-zero intermediate input links among

sectors—present higher levels of GDP per capita. To complement this empirical observa-

tion, we build a relatively simple theoretical model of a detailed network structure that

shows, intuitively, that under certain conditions, in denser production networks, a given

productivity shock could spill over more easily to the rest of the economy, generating

higher output, as observed in the data.

In our empirical approach, we use different econometric specifications that aim to

explore whether and to what extent production network density influences the GDP per

capita level of a country. Our data are sourced from the OECD databases and contain de-

tailed information on production linkages for 33 industries for each of the 55 countries in

our sample. We calculate network density following influential network science research

that aims to capture the complexity of network interconnections (see, for example, Gai,

Haldane, and Kapadia, 2011; Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015; Herskovic,
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2018). In particular, production network density is built to capture the proportional

amount of active connections within the productive input-output structure of a country,

which allows us to measure network diversification as in Miranda-Pinto (2021), while

capturing the notion of economic sparsity analyzed in Dupor (1999), Acemoglu et al.

(2012), and Acemoglu et al. (2015).

We test the relevance of network density to a country’s economic performance using

a number of cross-country fixed-effect panel regressions that include different sets of

drivers of economic growth commonly used in the literature such as years of schooling,

quality of institutions, service share, and an index of economic complexity, among others.

Across our specifications, we find a consistent positive effect of network density on a

country’s level of GDP. Our most conservative estimate indicates that a 10% increase

in network density (85 new links, among 1,056 possible links) is associated with a 3.5%

increase in GDP per capita (on average, $726 PPP US dollars, which corresponds to

Cambodia’s GDP per capita in 1995). The results suggest that network connections among

domestic industries drive most of the effect (77%) and that the number of imported

intermediates also plays a role in accounting for differences in GDP per capita across

countries.1

To support our empirical observation, we formally propose a theoretical model in

which network density could generate higher levels of output in a country. In our model

we assume that the topology of the production network is exogenous (active links), while

the intensity of the connections is endogenous to changes in relative input prices. We

use the model to study how different network structures affect the level of GDP via

shaping the strength of the propagation and amplification of sectoral productivity shocks.

To this end, we assume that sectoral productivity follows the same stochastic process

across sectors and countries and that the elasticity of substitution between inputs is

non-unitary and common across sectors and economies. Therefore, the main difference

among economies is the production network structure—namely, the network density,

sectoral intermediate input shares, and sectoral consumption shares.

Our main theoretical result indicates that the role of production network density

in shaping the level of GDP in an economy depends on the specifics of sectoral pro-

duction function. Under standard Cobb-Douglas production functions, which assume

unitary elasticity of substitution between inputs, network density plays no role in shap-

ing aggregate GDP. However, production network density does have a role in affecting

GDP when sectoral production function displays non-unitary elasticities of substitu-

tion in production and a love of diversification in the bundle of intermediate inputs.

We highlight two mechanisms in our model in which a higher network density results

1Kasahara and Rodrigue (2008) document that importing intermediate inputs is associated with higher
productivity and, therefore, output, which is consistent with the results in our empirical section.
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in higher output works as follows. First, within the intermediate input bundle of CES

production technologies, the number of intermediate inputs used in production affects

how productive a given mix of intermediate inputs is. The difference in intermediate

input productivity embedded in the diversification of the intermediate input bundle

then shapes firms’ equilibrium input shares, as long as the elasticity of substitution

between labor and intermediate inputs is different from one. If intermediate inputs and

labor/capital are substitutes, the love of diversification effect makes intermediates more

attractive in denser production networks, implying that denser networks are also more

connected networks that display a larger input-output multiplier. In this case, a given

level of sectoral productivity generates higher output in denser networks, all else equal.

In addition, our CES model displays non-linearities, as highlighted by Baqaee and

Farhi (2019). We show that when inputs are gross substitutes, positive productivity shocks

are amplified, and negative productivity shocks are mitigated. This asymmetry is larger

in denser production structures. Therefore, while our first mechanism holds in steady

state, this second mechanism operates for higher-order approximations of real GDP.

We conclude our theoretical construct with a numerical simulation and counterfac-

tual exercises. We calibrate the model to match each of the 55 countries production

structures in 1995. Our calibration also matches the empirical relationship between

network density and log GDP per capita we document. In our counterfactual experiment,

we study what Thailand or Indonesia’s GDP would be if they displayed the production

network diversification observed in Denmark or Australia. Our results show that these

gains can be sizable. For instance, in our benchmark calibration, Thailand’s GDP would

be 23% larger if it displayed the diversified production structure of Denmark.

The rest of the paper is organized as follows. Section 2 discusses the literature on the

role that production diversification and complexity play in shaping the economic per-

formance of countries and regions. Section 3 describes data sources and methodology,

including the design of our network density variable. Section 4 presents our empirical

findings. Section 5 expands our empirical analysis by developing a theoretical frame-

work that rationalizes our results and we propose and quantify the mechanism for the

influence of network density on GDP per capita. Finally, Section 6 concludes, including a

discussion of policy implications. Additional analysis, data considerations, and proofs

are provided in the Appendix.

2 Related literature

Our paper contributes to the literature that studies the role that production network

structures play in shaping countries’ average income. In this sense, the papers that are
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closest to our study are Jones (2011), Bartelme and Gorodnichenko (2015), McNerney

et al. (2022), and Fadinger et al. (2021).

Jones (2011) studies the role that intermediate input linkages and input complemen-

tarity play in amplifying distortions and depressing aggregate productivity and GDP

(misallocation). Their model assumes a unitary elasticity of substitution between in-

termediate inputs and labor-capital, and the key production network moment shaping

GDP is the share of intermediate inputs in production (assumed to be common across

sectors). Jones (2011) empirically analyzes the cross-country correlation between the

intermediate input share and GDP per capita, finding no significant association.

Bartelme and Gorodnichenko (2015), McNerney et al. (2022), and Fadinger et al.

(2021) study the empirical association between the average input-output multiplier and

aggregate productivity to account for the differences in cross-country income per capita.

These papers find a positive correlation between the average input-output multiplier

and log of GDP per capita. The theoretical framework proposed by these authors and

Jones (2011) assumes unitary elasticity of substitution between intermediates and labor-

capital, which implies that the intensity of input-output connections is the key metric in

determining how productivity or frictions propagate and amplify along the production

chain. In their framework, there is no role for the network density.

Different from Jones (2011), Bartelme and Gorodnichenko (2015), McNerney et al.

(2022) and Fadinger et al. (2021), we emphasize the role played by a particular network

structure—network density—in amplifying productivity shocks in the presence of non-

unitary elasticity of substitution between intermediates and labor-capital, including a

love of diversification in the bundle of intermediate inputs. In this sense, we provide em-

pirical and theoretical support for the role of the proportion of positive I-O connections

in shaping the input-output multiplier and, therefore, GDP.

There is a large literature within regional economics, developed in the 1990’s, that have

used input-output tables to study economic growth and stability (e.g., Siegel, Alwang,

and Johnson, 1995; Wagner and Deller, 1998) —for a review, see Dissart (2003). More

recently, studies in different disciplines have used the interconnections of input-output

tables to also explore productive structures and their relation to economic performance

(e.g., Bartelme and Gorodnichenko, 2015; Sonis and Hewings, 1998; Xu, Allenby, and

Crittenden, 2011; Blöchl, Theis, Vega-Redondo, and Fisher, 2011). In the context of a

single country, Choi and Levchenko (2021) study the successful role that industrial poli-

cies played in the development of Korea. In their model, the industrial policy generates

manufacturing hubs in which firms become more productive due to having easier access

to credit and learning by doing, thus generating higher diversification among the I-O

structure of the country. In relation to this, although we do not model industrial policies

(and their costs) or other factors that determine a country’s network structure, we show
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in our theoretical framework that a higher number of active I-O links (denser network)

alone can improve a country’s output via multipliers.2

Explaining the intricacies and economic outcomes of input-output networks, Ace-

moglu and Azar (2020) model the evolution of the production network of a country to

understand how the endogenous reshaping of networks can support long-term economic

growth. The authors show that denser networks arise due to sectoral improvements in

productivity. However, they also show that, given productivity, a higher density of the

network increases output via providing more possibilities of efficient input combina-

tions. In our case, the network structure in our theoretical analysis is exogenous, but the

positive relationship between network density and income does arise from the fact that

input diversification improves input productivity (love of diversification). In this way, our

paper complements Acemoglu and Azar (2020) by documenting the empirical relation-

ship between network density and GDP per capita and by rationalizing this relationship

with a relatively simple extension of existing exogenous production network models with

CES technologies, as in Papageorgiou and Saam (2008) and Atalay (2017).3

Hidalgo and Hausmann (2009) and Hausmann and Hidalgo (2011) propose novel

ways to empirically study the influence of production structures in the economic per-

formance of nations. The authors develop indexes of economic complexity based on

exports diversification to understand how complexity supports economic development.

Their measure of economic complexity is constructed using the number of different

products a country exports and the uniqueness of those products compared to other

exporters’ products. Thus, their measure captures the ability to diversify shocks (number

of products) and comparative advantage (the ability to produce a unique product). Dif-

ferent from these papers, our network density measure is more aggregated at the industry

level and captures how shocks transmit along the production chain by considering the

number of active industry connections. In addition, the relationship between production

complexity and development in Hidalgo and Hausmann (2009) and Hausmann and

Hidalgo (2011) resides in the fact that a more complex production structure is the result

of unobserved capabilities. Expanding on this notion, our paper explicitly develops a

model that displays a direct connection between the production network structure and

GDP per capita.

Production and export diversification has also been widely studied as a feature of

2Choi and Levchenko (2021) do not evaluate this, as their model does not connect firms.
3It is worth noting that Acemoglu and Azar (2020) use a Cobb-Douglas production function. In addition,

the love-of-diversification effect in their model is different from ours. In particular, in their model, the
arrival of new varieties increases the amount of inputs in production and, all else equal, increases output.
In our model, the CES function imposes weights on the intermediate inputs, which add up to one; therefore,
when adding a new variety, the process does not necessarily increase output, as it requires reallocating
other intermediates.
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economic resilience, with researchers arguuing that diversified economies support a

better buffer to shocks. Indeed, the 2008-09 global economic crisis spawned a number

of studies on economic diversity, stability and the ability to recover from downturns

(e.g., Han and Goetz, 2015; Deller and Watson, 2016). Looking at link volatility and

development, Koren and Tenreyro (2013) explore the role of input diversification, al-

though the authors do not offer a framework with input-output linkages and provide no

empirical evidence linking network density and GDP per capita.4 In a similar analysis,

Krishna and Levchenko (2013) show a negative relationship between the number of

intermediates used in production and GDP volatility; however, the authors do so only

by exploring information from manufacturing industries and, thus, miss all the other

interconnections that occur in an economy that can be also relevant to explaining growth.

Miranda-Pinto (2021) expands on Acemoglu et al. (2012) and Krishna and Levchenko

(2013) by exploring the empirical and theoretical relationship between the economy’s

wide intermediate input diversification and the service share in driving GDP volatility.

We expand the econometric and theoretical approaches developed by Miranda-Pinto

(2021), and, rather than focusing on the relationship between the production network

structure and short-term macroeconomic volatility, we focus on the role of production

structure in shaping the average income of a country.

3 Data and methodology

We piece together a cross-country panel dataset consisting of 55 countries over seventeen

years (1995-2011), forming a strongly balanced panel of 935 observations.5 To evaluate

the economic effects of production network density, we construct panel models using

GDP per capita as the dependent variable and a set of different drivers of economic

development as independent variables. For the dependent variable, we collect data on

GDP per capita at purchasing power parity (PPP) at current international dollars from

the World Bank’s World Development Indicators.6 From this same database, we obtain

data on population and years of schooling, this last a key determinant of income per

capita according to Mankiw et al. (1992).

Motivated by the resource curse literature (e.g., Sachs and Warner, 1995; Fleming,

Measham, and Paredes, 2015), on the one hand, we control for the size of the commodity

sector in each economy (as a share of total output). On the other hand, motivated by

4The authors provide evidence for eight OECD economies showing that for the period 1970-2007, the
diagonal shares of the input-output table have become smaller, on average, (indicating more reliance on
other sectors.)

5We select these 55 countries because they are the only ones with available data, across our different
sources. Rule of Law is the only variable where data is not available across all 17 years.

6data.worldbank.org
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Calderón and Liu (2003) and Beck et al. (2014), who study the relationship between the

size of the financial sector and economic growth, we use the output share of the financial

sector as a control. Broadberry (1998) and Moro (2015) study the relationship between

the service sector share and GDP growth. Hence, we also control for the service share

within a country’s economy. In addition, following Acemoglu et al. (2017), we control for

the degree of sectoral dominance in the production network.7 These four measures are

obtained from the OECD input-output tables.

An open economy has long been touted as a necessary element to growing an econ-

omy as discussed in the seminal paper of Frankel and Romer (1999). Thus, we control

for this by introducing the ratio trade to GDP in our dataset, where trade is the sum of a

country’s exports and imports. Additionally, high quality institutions have been shown to

have significant effects on GDP per capita (Acemoglu and Robinson, 2012). Therefore, to

control for the quality of institutions and governance, we use the Rule of Law index from

the World Governance Indicators (also via the World Bank), which captures institutional

quality of countries. In addition to trade and institutions, formative papers such as Lucas

(1988) and Mankiw et al. (1992) have long well established the importance of physical

capital in economic development. We capture this using a measure of physical capital

stock provided by the Penn World Tables8.

We also include as development driver the Economic Complexity Index (ECI+) (devel-

oped by Hidalgo and Hausmann, 2009; Albeaik, Kaltenberg, Alsaleh, and Hidalgo, 2017),

which measures how sophisticated an economy’s production is. ECI+ is assessed by

taking into account the diversity of a nation’s exports and the uniqueness of the products

that are exported. This index is a preferred measure of economic complexity since it

performs better than the original ECI as a predictor of growth (Albeaik et al., 2017). To

complement the set of drivers of development, we also use OECD input-output tables

to calculate forward and backward I-O linkages9. Forward and backward linkages are

important factors to consider when analyzing the interdependence between different

sectors of an economy and its effect on economic development. First conceptualized by

Hirschman (1958), forward linkage is the instance when outputs from a given sector en-

courage their use as inputs in other sectors. Conversely, backward linkages are instances

7Acemoglu et al. (2017) show that economies with larger sectoral dominance display sharper downturns.
Dominance is defined as the ratio between the largest Domar weight (supplier centrality) in the network
and the variability in sectoral supplier importance. A symmetric and simple network with no dominant
sector displays a value of 1, while a network with only one extremely important supplier of intermediates
will display a very large value of dominance.

8www.rug.nl/ggdc/productivity/pwt
9Forward = 1

N (1
′
(I − Γ)−11) , Backward = 1

N (1
′
(I − Γ̃

′
)−11), where Γ is an NxN matrix and an element

γij represents the importance of j as a supplier of i (i.e., forward linkage). Likewise, Γ̃ is an NxN matrix
and an element γ̃ij represents the importance of j as a customer of i (i.e., backward linkage). 1

′
and 1 are

1xN and Nx1 matrices, respectively. They help to sum up and collapse the matrices into a single measure.
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when growth in a particular sector also encourages growth in other sectors which provide

its inputs. Baqaee and Farhi (2019) demonstrated how distortions in such linkages can

explain variations in productivity across countries. Summary statistics of these, and all

variables used in our study, are provided in the Appendix (Table 3).

Finally, OECD data is also used to estimate our main variable of interest: Produc-

tion network density (Density). Details on how Density is calculated and analyzed is

described next.10

3.1 Measuring Production Network Diversification

Following Acemoglu et al. (2015) and Miranda-Pinto (2021), we define production net-

work diversification using network density. The production network density, Density, of

a country measures how interconnected its industries are. To estimate this, we use the

formula

Density =

∑N
i=1

∑N
j 1 [ω̃ij > ω]

N(N − 1)
, (1)

where ω̃ij is an input-output share that can be observed. It captures the portion of

intermediate input that originated from sector i and subsequently shipped to sector’s j

total expenditure on intermediates. These input-output relationships are not symmetri-

cal; there may be situations, for example, in which sector i provides inputs to sector j, but

sector j does not supply intermediates to sector i. 1 [ω̃ij > 0] is a function that determines

input-output connections that are larger than a tiny threshold of ω ∈ [0.00001, 0.001]. N

is the number of sectors. If Density is equivalent to 0, this indicates that no sectors in the

economy rely on others for production. However, if Density equals 1, then each sector

relies on all other sectors for production purposes.

Table 1 displays descriptive statistics for total Density (assuming ω = 0.001), its varia-

tion across countries and over time, and GDP per capita.11 Across all our observations,

Density has a mean of 0.811, implying that the average country in our sample, on an av-

erage year, will have about 856 network connections out of a possible 1,056 connections

(81.1 per cent of possible connections). Delving into the average standard deviation (SD)

of Density within countries (over time), we see an average of 0.022, which tells us that a

single deviation from the mean within a given country would create roughly 20 extra net-

10The OECD input-output data have two different sources: first, the ’ISIC Revision 3’ that covers 33
industries over the period 1995-2011; and, the ’ISIC Revision 4’ that covers 35 industries from 2005 to 2015.
For consistency, we decided to use the ISIC Revision 3, to have comparable network density measures over
time. Source: http://www.oecd.org/sti/ind/input-outputtables.htm.

11Throughout the paper we use total Density, which includes domestic linkages and imported inter-
mediates. In the Appendix we show how results hold for network density considering only domestic
linkages.
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work linkages. With regard to the average standard deviation of Density across countries,

we observe a variation of around 96 production network linkages. This demonstrates

that there is a healthy variation in network densities throughout the 55 countries’ data

and over time. Focusing on GDP per capita (US PPP dollars), we see that there is also

a decent amount of variability in income per capita across countries, given a standard

deviation ($13,219) that is more than half the average national income ($20,743).

Table 1. Descriptive statistics

Variable Obs. Mean Std. Dev. Min. Max.
Density (Production network density) 935 0.811 0.094 0.498 0.980
SD of Density across countries 55 0.094 0.003 0.088 0.098
SD of Density within countries 17 0.022 0.016 0.003 0.091
GDP per capita ($ US dollars PPP) 935 20,743 13,219 789 75,113

Figure 1 provides an illustrative example of Density. The figure shows the production

network structure of Thailand and Denmark in 1995. The size of each node represents

the relative share of that particular sector in the economy. Each number represents a

sector (see details in Table 7 in the Appendix). For example, sector s20 (Construction)

and sector s21 (Wholesale trade) are among the largest sectors in both economies. There

is also clear heterogeneity in sectoral composition, consistent with each country’s stage

of development. While the Agriculture and Textile sectors (sectors s1 and s4, respectively)

are among the largest sectors in Thailand, the Real Estate and Health sectors (sector s26

and s32, respectively) are among the largest sectors in Denmark.

Figure 1. Input-output network in Thailand and Denmark in 1995

Note: This figure shows the production network of Thailand and Denmark in 1995 using the ISIC rev. 3 sectoral classification. Each
node (circle) is a different sector in the economy, and the size of the node represents sectoral output shares (the labels in the nodes
are linked to sectors in Table 7 of our Appendix). An arrow from sector i to sector j represents intermediate inputs flowing from i to
j. The intensity of the arrow (darkness and width) indicates how much sector i is buying from j as a fraction of total intermediate
input expenses. Source: Authors with I-O data from the OECD –see footnote 11.

A network link is represented by an edge from sector i pointing to sector j, which

represents intermediate inputs supplied from sector i to sector j. The width of the edge
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represents the intensity of the connection (intermediate input purchases) as a share of

sectors’ total sales. Visually, one can see that Denmark has a denser production network

than Thailand. Indeed, in 1995, 86% of sectoral connections in Denmark were non-zero

(Density= 0.86), while in Thailand, only 62% of sectoral connections were active (Density

= 0.62). To put these numbers into perspective, in 1995, the Danish economy had about

250 extra linkages compared to Thailand. Part of this difference comes from the highly

connected service sector in Denmark. We can see that the Financial Intermediation

sector (s25) resides in the center of the network, and, even though it does not rank among

the largest sectors, it is one of the sectors with the largest number of edges pointing to

other sectors. Two additional service sectors are central in the Danish network (but not

in the Thai network). These sectors are the Real Estate sector (s26) and the R&D and

Professional Services sector (s29).

Figure 2 presents a scatter plot showing our measure of production network density

over the years against the respective country (log) GDP per capita. As the figure shows,

there is a strong positive association between Density and GDP per capita. On average,

an increase in network density of 0.1 —about ten new links among sectors— is associated

with a 4.65% higher GDP per capita. 12

Figure 2. Production network density (Density) and development, all data points

To study the robustness of the association between Density and GDP per capita

in Figure 2, the next section specifies the econometric strategy we use to control for

additional drivers of economic development, including unobserved and time-invariant

12As pointed out by one reviewer, the relationship seems to flatten at higher levels of GDP per capita. We
checked this non-linearity and found that the squared value of Density is negative and significant, but
producing a turning point at around 0.95. In other words, it is driven by the extremes of distribution of
network density (95 percent and above) and it is associated with negligible declines in GDP per capita. We
checked non-linearity in the panel regressions performed below, which results were not statistically valid.
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country characteristics.

3.2 Econometric strategy

We use within estimators in order to develop a robust understanding of the relationship

betweenDensity and GDP per capita. This form of estimation, country fixed effects, helps

us to deal with any endogeneity stemming from time-invariant country characteristics.

Taking into account the insights from Figure 2, we estimate Equation 2:

Ln(Yct) = α0 + α1Ln(Densityct−1) + γΨ′ct−1 + ε. (2)

Here, c is a country and t a given year between 1995 and 2011. The dependent variable

Y is GDP per capita PPP adjusted in international dollars. α1 is our main coefficient

of interest and captures the elasticity of Density on GDP per capita. Ψ′ is a vector that

includes the drivers of economic development. As discussed above, these control vari-

ables include measures of institutional quality, market share of the financial, service and

commodity sectors, the degree of sectoral dominance in the network, population growth,

trade to GDP ratio, years of schooling, the economic complexity index (ECI+), capital

stock, and backward and forward linkages. All covariates, including Density, are lagged

one year to avoid reverse causality issues in the estimation. Year fixed effects are also

considered in the estimation of equation (2).

4 Empirical Results

The results from the panel regressions are presented in Table 2. Column 1 shows the

parsimonious model results (accounting only for country fixed effects) where Density

reaches a statistically significant elasticity of 2.1. The within R-squared that measures the

fit of the regression within a country over time is 7.3%.

Column 2 presents the results of a model including all additional drivers of economic

development discussed above. Column 3 adds year-fixed effects to the estimations.

Unfortunately, data on Rule of law is not available for all 17 years of our period of study,

which drops our observations to 693 in columns 2 and 3. Estimations excluding Rule of

law, ergo maintaining 880 observations, produce structurally similar results with our

coefficients for Density statistically significant, but around 10% lower.

Across the three sets of results, we see thatDensity has a consistent positive significant

effect. This is in line with theory (explained later) and the intuition taken from Figure 2.

The Density elasticity in column 3 implies that a 10% increase in the network density of

the average country will increase its GDP per capita by roughly $770 PPP international
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dollars. In the Appendix (Table 4), we show that the same result holds when using only

domestic input-output connections. In that case, a 10% increase in domestic connections

in the average country is associated with an increase in GDP per capita of roughly $600.

Similarly, if we use a different threshold to define an active connection, ω̃ = 0.00001

instead of ω̃ = 0.001, we observe an even larger coefficient (see Table 5 in the Appendix).

We also tested estimations excluding Cambodia, which seems as an outlier in our data set

presenting low levels of GDP per capita and Density (blue dots in the bottom left section

of Figure 2).13 Results excluding Cambodia, Table 6 in the Appendix, show that Density is

still strongly associated with GDP per capita.

Results show that the elasticity of trade is a statistically significant predictor of GDP

per capita, reflecting the importance of trade openness in more-modernized and growing

economies, as in Frankel and Romer (1999). When accounting only for country fixed

effects, service share and education (Years of schooling ) affects GDP per capita positively,

as evidenced in multiple empirical studies (see, for example, Mankiw, Romer, and Weil,

1992) and Moro (2015)).

In line with the ’Resource Curse’ hypothesis (Sachs and Warner, 2001), our variable

capturing dependence on natural resource extraction shows a negative effect on GDP

level of a country. Such a negative effect can come from different ’resource curse’ chan-

nels, such as Dutch disease effects or temporary loss of learning by doing (Van der Ploeg,

2011; Fleming et al., 2015). Rule of law is another statistically significant predictor of

higher levels of GDP per capita, pointing to the relevance of institutional strength to

economic progress. 14

5 A Simple Theoretical Rationale

In this section, we propose two theoretical channels in which a denser production

network could generate higher output. In this case, the production network is exogenous

and we study how different network structures affect the propagation and amplification

of sectoral productivity shocks.

The model in this section differs from those of Jones (2011), Bartelme and Gorod-

nichenko (2015), Fadinger et al. (2015), and McNerney et al. (2022) in the following

aspects. First, the model economy displays non-unitary elasticity of substitution be-

tween intermediate inputs and labor. Second, as implied by standard CES production

technologies, the productivity of the intermediate input bundle depends on how diversi-

13We thank a reviewer for noting this point.
14Other World Governance Indicators such as Control of corruption, Government effectiveness, Voice and

accountability, Political stability, and Regulatory quality were also considered in our estimations but left
out do to issues of high collinearity. In any case, their inclusion do not change our results.

13



Table 2. Panel Fixed Effects results, with lags, 1995-2011

(1) (2) (3)
Ln GDP pc Ln GDP pc Ln GDP pc

Ln Densityt−1 2.102*** 0.443** 0.370***
(0.753) (0.187) (0.136)

ECI+t−1 0.078 0.095
(0.089) (0.070)

Ln Sectoral dominancet−1 -0.178* -0.155**
(0.094) (0.071)

Ln Financial sector sharet−1 0.095 0.088
(0.078) (0.070)

Ln Service sector sharet−1 0.461** 0.113
(0.199) (0.199)

Ln Natural resources sharet−1 -0.415*** -0.377***
(0.031) (0.051)

Ln Trade to GDPt−1 0.306*** 0.212***
(0.059) (0.045)

Ln Years of schooling t−1 0.431*** -0.095
(0.101) (0.099)

Rule of lawt−1 0.077* 0.097***
(0.044) (0.036)

Population growth -0.018* -0.006
(0.001) (0.008)

Ln Capital stockt−1 0.014 0.044
(0.042) (0.043)

Ln Backward I-O linkagest−1 0.030 0.0006
(0.027) (0.024)

Ln Forward I-O linkagest−1 0.309 0.134
(0.224) (0.197)

Constant 10.15*** 7.014*** 8.117***
(0.163) (0.718) (0.735)

Observations 880 693 693
R-squared 0.900 0.991 0.995
Number of countries 55 55 55
Country FE Yes Yes Yes
Year FE No No Yes

Note: This table presents a panel fixed-effect regression using log GDP per capita as the dependent variable and several time-variant
country characteristics as independent variables. Robust standard errors in parentheses, clustered by country. *** Significant at the
1-percent level; ** Significant at the 5-percent level; * Significant at the 10-percent level.
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fied the mix of intermediates is. Third, with CES, the sectoral productivity shocks have

asymmetric effects, depending on the network diversification and production flexibility.

Due to these three elements, absent from the papers cited above, the model in this sec-

tion delivers a role for production network diversification in shaping aggregate levels of

GDP.15

Firms

The economy is composed of N sectors. In each sector, there is a continuum of homoge-

neous firms that behave competitively. The CES production technology of firms in sector

j is

Qj = Zj

(
a

1
εQ

j L

εQ−1

εQ

j + (1− aj)
1
εQM

εQ−1

εQ

j

) εQ
εQ−1

, (3)

in which the intermediate input bundle is

Mj =
( N∑
i=1

ω%Mij M
εM−1

εM
ij

) εM
εM−1

. (4)

The gross output of the representative firm in sector j is Qj. Sectoral total factor

productivity is Zj; labor is Lj; Mj is the intermediate input bundle of sector j; and Mij

is the amount of intermediates that sector j purchases from sector i. The parameter

aj represents how important labor is in the total value of production. The element ωij
reflects the importance of sector i as an input supplier to sector j. Hence, the square

matrix Ω—of dimensionN and typical element ωij—defines the input-output structure of

the economy. The elasticity of substitution between labor and intermediates is denoted

by εQ, and the elasticity of substitution among material varieties is εM . While we allow

these two elasticities to differ, for mathematical and computational simplicity most of

the analysis assumes εQ = εM .

The parameter %M captures the love for diversification in the bundle of intermedi-

ates. As we explain later, the elasticities of substitution between inputs and the love-

for-diversification parameters are crucial in determining the relationship between the

production network structure and GDP.

15The model is similar to the one developed in Miranda-Pinto (2021), but that model focuses on the
relationship between the production network structure and short-term macroeconomic volatility, while the
present study focuses on the relationship between the structure of the production network and long-term
GDP levels.
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Households

The representative household maximizes utility

U(C1, ..., CN) =
N∏
j=1

C
βj
j , (5)

subject to the budget constraint

wL̄+
N∑
j=1

πj =
N∑
j=1

PjCj, (6)

in which Cj is the household’s consumption of sector j’s output. The parameter βj repre-

sents the importance of sectoral consumption in aggregate consumption expenditure.

We have that
∑N

j=1 βj = 1. We assume that labor is supplied inelastically; πj is profit from

firms in sector j; w is the wage rate; and Pj represents the price of sector j’s good.

We use bold letters to distinguish between vectors/matrices and scalars. For example,

while Pj is the price of sector j, P = [P1 ... PN ] is the vector of dimension N by 1 that

contains all sectoral prices. Throughout the paper I refers to the identity matrix and 1 a

vector of dimension N by 1 full of ones.

Proposition 1 provides the solution for the competitive equilibrium of the model.16

Proposition 1 Assume that εQ = εM 6= 1; and a labor endowment L̄ = 1. Then, log real

GDP (GDP = C) in this economy is

logC =
N∑
j=1

βj log
(βj
Pj

)
, (7)

while the vector of sectoral prices is

P1−εQ = [I− ZεQ−1 ◦ (1− a)1′ ◦
(
Ω′
)%M εQ)]−1(ZεQ−1 ◦ a). (8)

Proof: See Appendix.

Proposition 1 shows that log GDP depends on sectoral prices, which, in turn, are a

function of the production network structure (Ω, a), sectoral productivity Z, the elasticity

of substitution between inputs εQ, and the love-for-diversification parameter %M . As

we will see next, log GDP is a function of the production network density, and their

relationship depends crucially on the value of %MεQ. Bartelme and Gorodnichenko (2015)

16Competitive equilibrium is defined as follows. Firms and households take prices as given, and given
prices maximize their objective functions subject to constraints, such that the goods market and the labor
market clear.
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and Fadinger et al. (2021) obtain a related result for the relationship between the input-

output structure and log GDP. However, the authors explore the case of unitary elasticity

of substitution, in which, as we will see below, the relationship between network density

and GDP is non-existent.

The previous proposition presents the global non-linear solution of the model, for

any sequence of sectoral productivity. However, to better highlight the key mechanisms

at play, the next proposition provides a second-order approximation to log real GDP. Here

we borrow results from Baqaee and Farhi (2019)’s Proposition 7. We contribute to these

papers by studying the first and second-order effects of productivity shocks for networks

that differ in their diversification.

Proposition 2 To a second-order approximation, around the steady-state equilibrium

(Zj = 1, ∀j) of real GDP (C̄), and a vector of steady-state sales shares to GDP ratios (Domar

weights) λ of sizeN × 1, the effect of iid sectoral productivity shocks on real GDP, C, is given

by

logC = logC +
N∑
i=1

λi︸︷︷︸
size

logZi +
N∑
i=1

1

2

d log λi
d logZi︸ ︷︷ ︸

resizing

(logZi)
2, (9)

logC =
N∑
j=1

βj log
( βj
P j

)
, (10)

while the steady-state vector of sectoral prices P and Domar weights λ are

P
1−εQ

= [I− (1− a)1′ ◦
(
Ω′
)%M εQ)]−1a, (11)

λ = [I − Γ]−1β, (12)

where Γ is the steady-state matrix of input-output shares. These shares are equilibrium

objects that depend on Ω, a, εQ, εM , %M , and Z. The changes in sectoral Domar weights are

dλi
d logZi

=
N∑
j=1

λj

(
−

N∑
k=1

N∑
h=1

γkj
(
εM(ωhj − δhk) + (εQ − 1)(γhj − ωhj)

)
ΨikΨih

)
, (13)

where δhk = 1 if h = k, and 0 otherwise. γkj =
PkMkj

PjQj
, ωkj =

PkMkj∑N
l PlMlj

, and Ψ = [I − Γ]−1.

The contribution of this paper is to study the role of production network diversifica-

tion in shaping these channels. In particular, as we show next, all else equal, production
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network diversification, can affect the steady-state level of real GDP, can affect the Domar

weights of the economy, and can shape the strength of the non-linear resizing mecha-

nism.

Previous literature has highlighted the role of forward input-output (IO) linkages

(Leontief inverse matrix) in the propagation of shocks and the determination of real

GDP (Acemoglu et al., 2012; Liu, 2019, e.g.,). In this paper, we do not claim that forward

IO linkages are not relevant but instead provide an additional network statistic that

is useful to understand cross-country differences in income. As we discussed above,

when technologies are Cobb-Douglas, observed IO linkages are a sufficient statistic to

understand real GDP. Once we deviate from unitary elasticities of substitution, forward

IO linkages become endogenous and production network diversification plays a role by

itself, either by shaping the level of forward IO linkages or shaping the way forward IO

linkages change in response to shocks. Network density has different effects, depending

on the value of production elasticities, and it affects the economy through two channels,

the love of diversification channel and the non-linear propagation channel.

5.1 Gains from diversification (first-order effect)

To better examine the role of production network diversification, we study a two sectors

economy. At steady state, Zj = 1 for all j, with common a, β and εQ, εM (εM = εQ) across

sectors and networks, we have that steady-state output is

logC = − β

1− εQ
[log (a(1− γ̃22 + γ̃12)) + log (a(1− γ̃11 + γ̃21))− 2 log ((1− γ̃11)(1− γ̃22)− γ̃12γ̃21)] ,

in which γ̃ij = (1− a)ω
%M εQ
ij .

We now study symmetric networks. In this case, the matrix Ω, which represents the

input-output network of the economy, displays homogeneous row sums (first-order

outdegree). Thus, when a, εQ, and εM are common across sectors, sectoral prices are the

same across sectors, within the network. Let us define the following symmetric networks

Ωsparse =

[
0 1

1 0

]
and Ωdenser

[
1/2 1/2

1/2 1/2

]
.

logC
dense − logC

sparse
= − 2β

1− εQ

[
log a− log

(
1− 2(1− a)

(1

2

)%M εQ)] .
Figure 3 shows logC

dense − logC
sparse

for different values of (1− a), the importance of

intermediate inputs in production. We impose %MεQ < 1 and εQ > 1, which we explain
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Figure 3. Steady-state log real GDP and production diversification (size)

Note: This figure depicts the difference between log real GDP in the dense network and the sparse network (y-axis). The x-axis is
the distribution parameter for intermediate inputs in production. The parameter values assumed are β = 0.5, %M = 0.78, εQ = 1.2

next. We observe that in this case, the dense network has larger real GDP than the

sparse network. The difference is increasing in the importance of intermediate inputs in

production (1− a).

Note that, implied in Dupor (1999), Acemoglu et al. (2012), Bartelme and Gorod-

nichenko (2015), and Fadinger et al. (2021), when εQ = 1 or when εQ = 1
%M

, both networks

behave the same. In particular, we have logC
dense − logC

sparse
= 0. Two symmetric

networks, which differ only in terms of their production diversification, display the same

sectoral centralities and aggregate GDP, in steady-state. In such a case, the extensive

margin of connections does not affect the equilibrium intensity of sectoral connections,

which, in the end, determines how shocks propagate along the production chain.

The love for diversification affects the productivity of the intermediate input bundle.

The relative price of the intermediate input bundle PM
j /Pj can be expressed as

PM
j

Pj
=

1

Pj

( N∑
i=1

ω%M εMij P 1−εM
i

) 1
1−εM

In symmetric networks, in which sectoral prices Pj are the same across sectors, the

intermediate input price index becomes
PMj
Pj

=
(∑N

i=1 ω
%M εM
ij

) 1
1−εM .

In this simple case, having higher production diversification (more intermediates) is

associated with a lower relative cost of the intermediate input bundle. When this is the

case, if firms have an elasticity of substitution between inputs εQ above one, they are able

to enjoy the love-for-diversification embedded in the intermediate input bundle.
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We aim to test this implication using WIOD data on sectoral prices, intermediate

input shares, and the number of suppliers with an intermediate input share larger than

1%. Here we are forced to use WIOD data instead of OECD as the latter does not have data

on sectoral price indices. In this case, we can only study the relationship between input

prices and input diversification for sectors in 40 countries. We note that our evidence

here is only suggestive as we are not controlling for unobserved changes in productivity.

Table 8 of the Appendix shows that when sectors increase their input diversification

by increasing their number of suppliers, the relative price of intermediate to output

declines.

In a recent paper, Baqaee et al. (2023) use microdata to support the existence of a

love-of-variety in the intermediate input demand of Belgian firms.

5.2 Resilience from diversification and flexibility (second-order effect)

Outside the deterministic steady-state, log real GDP is driven by productivity shocks. As

we can see in Proposition 2, these shocks propagate more or less strongly depending on

the production network structure. Facing a given sequence of non-negative productivity

shocks, an economy with larger Domar weights will experience an increase in real GDP

(”size”).

If log productivity is, on average, positive, sectoral Domar weights, shaped by the

network structure, determine the response of real GDP to changes in productivity (up to

first order). In our two sectors example, the vector of steady-state Domar weights is[
λ1

λ2

]
=

[
β(1−γ̃22+γ̃12)

(1−γ̃11)(1−γ̃22)−γ̃12γ̃21
β(1−γ̃11+γ̃21)

(1−γ̃11)(1−γ̃22)−γ̃12γ̃21

]
,

where γ̃ij =
(
(1− a)ωij

)%M εQ .

Here, λi = β
a

in the sparse , while λi = β

1−
(

(1−a)
2

)%MεQ . When %M = 1
εQ

, both networks

display the same Domar weights in steady-state ( λi = β
a

). However, when %MεQ < 1, the

more diversified network has a larger network multiplier. If, in addition, log sectoral

productivity has a positive mean, the more diversified economy will enjoy higher GDP.

The last term in equation 9 contains the resizing effect in which log productivity, even

if its mean is zero, can generate deviations from steady-state real GDP. Extending the

analysis in Baqaee and Farhi (2019), here we show that, on average, economies with

higher production network diversification also have higher real GDP, when εQ > 1. As

Baqaee and Farhi (2019) demonstrated when inputs are substitutes, positive productivity

shocks are amplified, while negative productivity shocks are mitigated. Here, we show
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Figure 4. Average log GDP and production network diversification (resizing)

Note: This figure depicts the difference log real GDP in the dense network and the sparse network (y-axis). We assume that sectoral
productivity follows a log normal distribution with mean 0 and standard deviation 0.1. Average log real GDP is calculated from 100
simulations of size 1000. The parameter values assumed are β = 0.5, %M = 0.78, εQ = 1.2

that this non-linearity is amplified by production network diversification.17

Figure 4 plots log real GDP for these two networks using Proposition 2. To isolate

the different mechanisms, we assume that %M = 1/εQ, meaning there is no love for

diversification and C and λ̄i are the same in the dense and the sparse network. We can

see that the larger the substitutability between inputs, the larger is log real GDP in the

dense network compared to the spare network.

5.3 Calibration

In this section, we study the ability of the model to replicate the quantitative relationship

between Density and GDP observed in the data. We calibrate the model to match each

country’s production structure in 1995. We calibrate 1− aj, the importance of interme-

diate inputs in gross output of sector j, and ωij, the importance of intermediate input

i in all usage of intermediates of sector j, using an iterative process that matches the

data and the model’s implied intermediate input share.18 The model is highly non-linear

when εQ and εM are different from one. The literature estimating production elastici-

ties is large and the results vary substantially depending on the frequency of the data

used for estimation, the level of sectoral aggregation, and the econometric approach

used, among others. Given that our goal is to understand medium-term to long-term

17Miranda-Pinto, Silva, and Young (2023) also study the non-linear effects of network density but their
focus is on GDP skewness. In particular, the authors focus on the role of network density in amplifying
large negative shocks in the short-run, when firms have a hard time substituting inputs.

18More details on the algorithm in Appendix 6.2
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relationships, we use lower-frequency elasticities estimated in the literature. Carvalho

et al. (2021) (εM = 1.3, εQ = 0.6), Huneeus (2018) (εM = 2.8, εQ = 2.5), Peter and Ruane

(2023) (εM = 3.1, εQ = 0.6), Miranda-Pinto (2021) (εM = 1 and εQ = 3.1 for service sectors),

Nakano and Nishimura (2023) (εM = 1 = εQ = 1.5) estimate production elasticities above

one, either for εQ or εM . Barrot and Sauvagnat (2016) and Boehm et al. (2019) show that

in the shorter term, firms have a much lower ability to substitute among different inputs.

Our benchmark calibration uses εQ = εM = 1.1. In our Appendix 6.3, we provide the

results for different εQ = εM = 1.2 and εQ = εM = 1.3.

We need to discipline the value of %M , which drives the love for diversification in our

model. Given, the parameter values above, we solve the steady-state of the model for

different values of %M . Then, we obtain the steady-state value of log GDP. For each value

of %M we obtain the OLS coefficient of a cross-sectional regression between log GDP and

network density, namely (αmodel1 ). We choose the value of %M that minimizes |αdata1 −αmodel1 |,
in which αdata1 is the estimated coefficient in column 1 of Table 2, which equals 2.1. Our

baseline calibration implies %M = 0.746. We also consider a more conservative calibration

in which we match αdata1 = 0.37 from column 3 of Table 2 (%M = 0.86).

Figure 5 plots the model-implied steady-state log real GDP against the calibrated

network Density at the beginning of the period (density in 1995). We observe that

the model is able to replicate the observed positive relationship between log GDP and

production network density.

Figure 5. Density and model-implied real GDP

Note: This figure plots, in the y-axis, the model-implied steady-state log real GDP. The x-axis is the value of production network
density, calibrated to match countries’ network density in 1995. This figure uses εQ = 1.1 and %M = 0.746
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5.4 Counterfactual analysis

We use the model to investigate the role of production network diversification in explain-

ing income differences among countries. To this end, we go beyond the steady-state

equilibrium and use data on sectoral productivity dispersion, for a subsample of our

countries, to simulate long series (T = 5000) of these economies. In particular, we as-

sume that sectoral productivity follows a log-normal distribution with zero mean and

standard deviation σz. Hence, here we can study the joint role of sectoral productivity

and sectoral linkages in driving income differences across countries. Our exercise is the

following. We calibrate β, the vector of consumption shares, and a, the vector of labor

importance in production, such that the countries are identical in terms of consumption

shares and total intermediate input shares. The only differences between countries are: i)

the distribution of intermediate inputs embedded in Ω, and ii) the dispersion of sectoral

productivity shocks σz, which we calibrate using sectoral TFP data from Fadinger et al.

(2021).

We use four countries in our quantitative experiment: Thailand, Indonesia, Denmark,

and Australia. Thailand and Indonesia are relatively low-income countries with a GDP

per capita in 2011 equal to $13,535 and $8,837 USD (PPP adjusted), respectively. These

countries also display a relatively low network density of 0.62 and 0.69, respectively, in

1995. On the other hand, Denmark and Australia are relatively high-income countries

with a GDP per capita of $44,403 and $41,894 USD in 2011, respectively. At the same time,

these countries display denser production network structures, with a network density of

0.86 and 84, respectively, in 1995.

In our baseline calibration, εQ = 1.1, %M = 0.746, our model indicates that if Thailand

had Denmark’s network diversification, its GDP would be 23.53% larger. In our more

conservative calibration, εQ = 1.1, %M = 0.86, Thailand would experience a 9.54% increase

in GDP with Denmark’s network structure. On the other hand, if Thailand’s dispersion

of shocks, σz = 0.4, reduces to Denmark’s shocks’ volatility, σz = 0.21, the increase in

GDP would be 22.63% in the benchmark calibration and 9.35% in the more conservative

calibration. When productivity dispersion is the only difference between these countries,

income differences are negligible. Hence, productivity dispersion only plays a (small)

role through its interaction with production network diversification.19

We also compare Indonesia and Australia. In our baseline calibration, εQ = 1.1, %M =

0.746, if Indonesia had Australia’s network diversification, its GDP would increase by

19.23%. In the more conservative calibration, εQ = 1.1, %M = 0.86, Indonesia would see a

6.8% increase in its. If Indonesia’s dispersion of shocks (σz = 0.4) reduces to Australia’s

19These results do not imply that productivity differences across countries in level, not their volatility, are
irrelevant. Indeed, Fadinger et al. (2021) show that sectoral productivity, and its interaction with sectoral
network supplier centrality, can play an important role in accounting for income differences.
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one (σz = 0.15), the increase in GDP would be reduced to 18.8% in the benchmark

calibration and to 5.8% in the more conservative calibration. These results underscore a

stronger interaction between sectoral productivity dispersion and network structure.

In our Appendix 6.3 we show that our results are robust to different values of εQ, and

the corresponding re-calibrated values for %M .

Finally, we find no role for network density when %M = 1/εQ and Zj = 1 for all j, which

confirms our results in section 5.1. To understand the role of higher-order effects we can

compare the steady-state differences in log GDP (first-order effect) with the differences

in average log GDP over the simulated economy solved globally. We find that in our

benchmark calibration, the role of first-order effects is large. Indeed, more than 90%

of the differences are accounted for first-order effects. One reason is the fact that the

elasticities we use are not sufficiently larger (smaller) than one.

6 Conclusion

We show that the details of countries’ production network structure—specifically, the

number of active links in the production network (Density)—are strongly associated

with their level of GDP per capita. Even after controlling for key country characteristics

that are generally used in the economic growth literature, we show that countries with

denser production structures display higher average income. The empirical results also

provide strong support for the role of institutions, education, and economic complexity

in attaining higher income.

We extend the standard production network model in Acemoglu et al. (2012)— display-

ing input-output linkages, perfect competition and idiosyncratic sectoral productivity

shocks—to rationalize the evidence we document. The model indicates that, in the long

run, sectoral productivity levels are amplified in denser production structures, as long as

intermediate inputs and labor are easily substitutable, and a more diversified input mix

provides higher input productivity.

Our paper contributes to the literature that explores the role of production diversifica-

tion in economic development by documenting a strong cross-country correlation and

also highlighting the theoretical benefits of having a more diversified production network

structure. However, we should point out that our evidence and theoretical construct

should not be interpreted as the only causal mechanism. In other words, even though

we show that higher diversity in the use of intermediary inputs across sectors supports

higher levels of a country’s GDP per capita, we do not explicitly study the costs of diversi-

fying production systems. Nor do we explore the idea that to reach high diversification,

a country might first need to reach high income and minimum levels of other assets,
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such as educational attainment and institutional quality. The determinants and costs of

higher levels of Density are important topics for future research.

References

Acemoglu, Daron, and Pablo D. Azar. 2020. “Endogenous Production Networks.” Econo-

metrica 88 (1): 33–82. 10.3982/ECTA15899.

Acemoglu, Daron, Vasco M. Carvalho, Asuman Ozdaglar, and Alireza Tahbaz-Salehi.

2012. “The Network Origins of Aggregate Fluctuations.” Econometrica 80 (5): 1977–

2016.

Acemoglu, Daron, Asuman Ozdaglar, and Alireza Tahbaz-Salehi. 2015. “Systemic risk

and stability in financial networks.” American Economic Review 105 (2): 564–608.

Acemoglu, Daron, Asuman Ozdaglar, and Alireza Tahbaz-Salehi. 2017. “Microeco-

nomic origins of macroeconomic tail risks.” American Economic Review 107 (1): 54–108.

Acemoglu, Daron, and James A. Robinson. 2012. Why Nations Fail: The Origins of Power,

Prosperity and Poverty. New York: Crown, , 1st edition 529.

Albeaik, Saleh, Mary Kaltenberg, Mansour Alsaleh, and Cesar A. Hidalgo. 2017. “Im-

proving the Economic Complexity Index.” arXiv e-prints arXiv:1707.05826.

Atalay, Enghin. 2017. “How Important Are Sectoral Shocks?” American Economic Journal:

Macroeconomics 9 (4): 254–80. 10.1257/mac.20160353.

Baqaee, David, Ariel Burstein, Cédric Duprez, and Emmanuel Farhi. 2023. “Supplier

Churn and Growth: A Micro-to-Macro Analysis.”Technical report, National Bureau of

Economic Research.

Baqaee, David Rezza, and Emmanuel Farhi. 2019. “Productivity and Misallocation in

General Equilibrium*.” The Quarterly Journal of Economics 135 (1): 105–163. 10.1093/

qje/qjz030.
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Empirical Appendix

Here we present summary statistics of all variables used in our estimations and alternative

regression results considering different Density measures: one measuring the network

density across only domestic sectors (i.e., excluding connections to sectors from other

countries), and another considering a different minimum threshold to define ω (ω =

0.00001). We finish by showing the description of all sectors in the OECD I-O data base

used to construct Density.

Summary Statistics

Table 3. Summary statistics

Variable Obs Mean Std. Dev.
GDP pc ($US PPP) 935 20,743 13,219
Density 935 0.811 0.094
ECI+ 935 0.818 0.468
Sectoral Dominance 935 2.504 0.394
Financial sector share 935 0.044 0.022
Trade to GDP 935 0.882 0.622
Service share 935 0.613 0.106
Years of schooling 935 9.569 2.385
Population growth (in %) 880 0.731 0.961
Natural resources share 935 0.318 0.326
Rule of law 747 0.721 0.883
Capital Stock ($US PPP in 000’) 935 4,274 8,659
Backward I-O linkages 935 3.110 2.140
Forward I-O linkages 935 2.240 0.240
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Domestic Network Density

Table 4. Panel Fixed effects results using Domestic Density, 1995-2011

(1) (2) (3)
Ln GDP pc Ln GDP pc Ln GDP pc

Ln Density Domestict−1 1.019 0.386*** 0.293**
(0.614) (0.144) (0.112)

ECI+t−1 0.074 0.101
(0.087) (0.069)

Ln Sectoral dominancet−1 -0.179* -0.151**
(0.092) (0.070)

Ln Financial sector sharet−1 0.092 0.084
(0.080) (0.071)

Ln Service sector sharet−1 0.490** 0.142
(0.201) (0.201)

Ln Natural resources sharet−1 -0.418*** -0.377***
(0.031) (0.052)

Ln Trade to GDPt−1 0.324*** 0.229***
(0.061) (0.044)

Ln Years of schooling t−1 0.425*** -0.102
(0.102) (0.102)

Rule of lawt−1 0.082* 0.100***
(0.045) (0.036)

Population growth -0.018* -0.007
(0.010) (0.008)

Ln Capital stockt−1 0.010 0.039
(0.043) (0.044)

Ln Backward I-O linkagest−1 0.034 0.004
(0.028) (0.026)

Ln Forward I-O linkagest−1 0.303 0.138
(0.217) (0.194)

Constant 9.996*** 7.014*** 8.125***
(0.181) (0.710) (0.733)

Observations 880 693 693
R-squared 0.895 0.991 0.995
Number of countries 55 55 55
Country FE Yes Yes Yes
Year FE No No Yes

Note: Clustered robust standard errors in parentheses. *** Significant at the 1-percent level; ** Significant at the 5-percent level; *
Significant at the 10-percent level.
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Network Density considering different thresholds

Table 5. Panel FE Total Density Threshold: 0.00001, 1995-2011

(1) (2) (3)
Ln GDP pc Ln GDP pc Ln GDP pc

Ln Densityt−1 5.838*** 0.654*** 0.577***
(1.270) (0.239) (0.214)

ECI+t−1 0.068 0.086
(0.089) (0.066)

Ln Sectoral dominancet−1 -0.175* -0.154**
(0.096) (0.073)

Ln Financial sector sharet−1 0.085 0.080
(0.079) (0.071)

Ln Service sector sharet−1 0.503** 0.144
(0.191) (0.200)

Ln Natural resources sharet−1 -0.410*** -0.372***
(0.033) (0.055)

Ln Trade to GDPt−1 0.301*** 0.207***
(0.061) (0.046)

Ln Years of schooling t−1 0.429*** -0.099
(0.102) (0.104)

Rule of lawt−1 0.063 0.085**
(0.049) (0.038)

Population growth -0.015 -0.003
(0.009) (0.007)

Ln Capital stockt−1 0.004 0.035
(0.044) (0.045)

Ln Backward I-O linkagest−1 0.038 0.0078
(0.027) (0.025)

Ln Forward I-O linakgest−1 0.385* 0.195
(0.219) (0.209)

Constant 9.913*** 7.041*** 8.172***
(0.047) (0.741) (0.760)

Observations 880 693 693
R-squared 0.919 0.990 0.995
Number of countries 55 55 55
Country FE Yes Yes Yes
Year FE No No Yes

Note: Clustered robust standard errors in parentheses. *** Significant at the 1-percent level; ** Significant at the 5-percent level; *
Significant at the 10-percent level.
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Network Density without Cambodia

Table 6. Panel FE Total Density (without Cambodia), 1995-2011

(1) (2) (3)
Ln GDP pc Ln GDP pc Ln GDP pc

Ln Densityt−1 1.802** 0.443** 0.329**
(0.798) (0.205) (0.137)

ECI+t−1 0.078 0.083
(0.089) (0.069)

Ln Sectoral dominancet−1 -0.180* -0.172**
(0.100) (0.073)

Ln Financial sector sharet−1 0.094 0.084
(0.080) (0.071)

Ln Service sector sharet−1 0.477** 0.134
(0.205) (0.202)

Ln Natural resources sharet−1 -0.416*** -0.383***
(0.031) (0.052)

Ln Trade to GDPt−1 0.307*** 0.219***
(0.061) (0.046)

Ln Years of schooling t−1 0.435*** -0.104
(0.104) (0.101)

Rule of lawt−1 0.078* 0.097***
(0.045) (0.036)

Population growth -0.017* -0.006
(0.010) (0.008)

Ln Capital stockt−1 0.011 0.041
(0.043) (0.044)

Ln Backward I-O linkagest−1 0.030 -0.001
(0.027) (0.025)

Ln Forward I-O linkagest−1 0.307 0.156
(0.227) (0.195)

Constant 10.12*** 7.064*** 8.155***
(0.168) (0.720) (0.748)

Observatios 864 680 680
R-squared 0.882 0.989 0.994
Number of countries 54 54 54
Country FE Yes Yes Yes
Year FE No No Yes

Note: Clustered robust standard errors in parentheses. *** Significant at the 1-percent level; ** Significant at the 5-percent level; *
Significant at the 10-percent level.
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Sectors Definition

Table 7. Sectors in OECD Database

Sector Number Sector Name

S1 DOM C01T05: Agriculture, hunting, forestry and fishing
S2 DOM C10T14: Mining and quarrying
S3 DOM C15T16: Food products, beverages and tobacco
S4 DOM C17T19: Textiles, textile products, leather and footwear
S5 DOM C20: Wood and products of wood and cork
S6 DOM C21T22: Pulp, paper, paper products, printing and publishing
S7 DOM C23: Coke, refined petroleum products and nuclear fuel
S8 DOM C24: Chemicals and chemical products
S9 DOM C25: Rubber and plastics products
S10 DOM C26: Other non-metallic mineral products
S11 DOM C27: Basic metals
S12 DOM C28: Fabricated metal products
S13 DOM C29: Machinery and equipment, nec
S14 DOM C30T33X: Computer, Electronic and optical equipment
S15 DOM C31: Electrical machinery and apparatus, nec
S16 DOM C34: Motor vehicles, trailers and semi-trailers
S17 DOM C35: Other transport equipment
S18 DOM C36T37: Manufacturing nec; recycling
S19 DOM C40T41: Electricity, gas and water supply
S20 DOM C45: Construction
S21 DOM C50T52: Wholesale and retail trade; repairs
S22 DOM C55: Hotels and restaurants
S23 DOM C60T63: Transport and storage
S24 DOM C64: Post and telecommunications
S25 DOM C65T67: Financial intermediation
S26 DOM C70: Real estate activities
S27 DOM C71: Renting of machinery and equipment
S28 DOM C72: Computer and related activities
S29 DOM C73T74: R&D and other business activities
S30 DOM C75: Public administration and defence; compulsory social security
S31 DOM C80: Education
S32 DOM C85: Health and social work
S33 DOM C90T93: Other community, social and personal services

34



Table 8. Relative intermediate input cost and indegrees

(1) (2)
VARIABLES log(PM

j /Pj) log(PM
j /Pj)

log(supplier) -0.014*** -0.010**
(0.005) (0.004)

Observations 9,212 9,211
Adjusted R-squared 0.612 0.677
Country-Sector FE Yes Yes
Year FE Yes Yes
Country-Year FE No Yes
Sector-Year FE No Yes

Note: This regression uses data on input and output prices from WIOD database for the period 1996-2009. The dependent variable is
the logarithm of the price of the intermediate input bundle relative to the output price. The independent variables are the logarithm
of the number of suppliers, the intermediate input share, the weighted average of intermediate input shares, and a set of fixed effects
listed in the table.

Theoretical Appendix - Proofs

Proof Proposition 1

To ease notation define ρQ =
εQ−1
εQ

, εQ = 1
1−ρQ

, ρM = εM−1
εM

, εM = 1
1−ρM

. Also, let bj = 1− aj
the importance of materials in production. The firms first order conditions with respect
to inputs are:

Lj : PjZ
ρQ
(ajQj

Lj

)1−ρQ = w

Mj : PjZ
ρQ
(bjQj

Mj

)1−ρQ
= PM

j

Similarly, firms minimize the cost of the bundle of intermediates
∑N

i=1 PiMij subject

to Mj =
(∑N

i=1 ω
%M
ij M

ρM
ij

)1/ρM . In competitive markets, we obtain:

PM
j =

( N∑
i=1

ω%M εMij P 1−εM
i

) 1
1−εM .

Assuming common sectoral elasticities, the production function of firms in sector j
can be expressed as:

Z
−ρQ
j = a

1−ρQ
j

(Lj
Qj

)ρQ
+ b

1−ρQ
j

(Mj

Qj

)ρQ
,

which combined with the FONC gives:

P
1−εQ
j = Z

εQ−1
j ajw

1−εQ + Z
εQ−1
j b

( N∑
i=1

ω%M εMij P 1−εM
i

) 1−εQ
1−εM ,
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assuming εQ = εMand that the salario is the numeraire (w = 1) we have, in matrices,
the solution for prices:

P 1−εQ = [I − ZεQ−1 ◦
(
(1− a)1′ ◦ Ω′%M εQ

)
]−1(ZεQ−1 ◦ a) (14)

To obtain GDP we use the household budget constraint and first order conditions.
From the budget constraint, and assuming labor is the numeraire good, we have PcC = 1,
implying that logGDP = − logPc. We then minimize the consumption expenditure we
obtain

Pc =
N∏
j=1

(Pj
βj

)βj
.

Thus, as we already solved for prices, we have

logGDP =
N∑
j=1

βj log
(βj
Pj

)
.

Proposition 2

Proposition 2 mainly follows Baqaee and Farhi (2019). Here we solve for sectoral sale
shares λj =

PjQj
GDP

(Domar Weights). We multiply sectoral market clearing condition in
sector j by sectoral price Pj . we obtain

PjQj = PjCj +
N∑
i=1

PjMji,

where Sj is sectoral sales. Let’s use the household optimal consumption share for
each good (with εD = 1 we have PjCj = βjPcC). We multiply the last term by PiQi

PiQi
and

obtain

PjQj = PjCj +
N∑
i=1

PjMji

PiQi

PiQi,

where γji =
PjMji

PiQi
is the observed intermediate input share (from sector i using input

j). We divide both sides of the equation by nominal GDP =
∑N

i=1 PiCi and obtain

λj = βj +
N∑
i=1

γ̃jiλi,

in which λi is the Domar Weight of sector i. In matrix form we have

λ = (I − Γ̃)−1β.

6.1 Details on the Calibration

From the profit-maximizing condition we have (assuming εQ = εM )
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Mj : PjZ
ρQ
((1− aj)Qj

Mj

)1−ρQ
= PM

j ,

which after some manipulations imply

PM
j Mj

PjQj

= (1− aj)
( PM

j

PjZj

)1−εQ
(15)

We solve the cost-minimizing problem of the firms:

L =
N∑
i=1

PiMij + λ
(

(Mj −
( N∑
i=1

ω%Mij M
ρM
ij

)1/ρM).
In competitive markets, the marginal cost of the bundle (λ) equals the price of the bundle

∂L
∂Mij

= Pi − PM
j

( N∑
i=1

ωijM
ρM
ij

) 1−ρM
ρM ω%Mij M

ρM−1
ij = 0

∂L
∂Mij

= Pi − PM
j M1−ρM

j ω%Mij M
ρM−1
ij = 0

∂L
∂Mij

= Pi = PM
j

(Mj

Mij

)1−ρM
ω%Mij .

Manipulating the previous equation we obtain the model-implied intermediate input
share (as a fraction of total intermediate expenses)

PiMij

PM
j Mj

=
(PM

j

Pi

)εM−1
ω%M εMij . (16)

Replacing the previous equation into the intermediate bundle technology Mj =(∑N
i=1 ωijM

ρM
ij

)1/ρM yields

PM
j =

( N∑
i=1

ω%M εMij P 1−εM
i

) 1
1−εM . (17)

Our goal is to calibrate (1− ai) and ωji, given εQ and %M , such that the model-implied

intermediate input shares PMi Mi

PiQi
and PjMji

PMi Mi
equal the data counterparts. We then choose

different values from the literature on εQ, while we choose %M to match the observed
relationship between network density and GDP.

6.2 Calibration Algorithm for Ω and a

We use the following algorithm. Take a guess on the elements of the vector a0 and the
matrix Ω0. This gives us a total of N(N + 1) parameters to calibrate. Given this guess,
solve for the model implied intermediate input shares, which requires to solve for prices,
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to obtain:
Equation 15 and Equation (16)(

PM
j Mj

PjQj

)0

= (1− a0j)

(( PM
j

PjZj

)0)1−εQ

(
PjMji

PM
i Mi

)0

=

((
Pj
PM
i

)0
)1−εQ (

ω0
ji

)%M εQ
The next step involves using the observed shares we want to match to back out the

next iteration of parameters in Ω1 and a1. Essentially, we invert the system to get

1− a1j =

(
PM
j Mj

PjQj

)obs (( PM
j

PjZj

)0 )εQ−1

ω1
ji =

( PjMji

PM
i Mi

)data((
Pj
PM
i

)0
)εQ−1

 1
%MεQ

.

Here, the same steps repeat. We invert the system to find the model implied shares
and prices. Using those equilibrium objects, and the observed shares, we obtain the next
parameter a2. We iterate until the distance between the model implied shares and the
observed shares is small enough.

Indeed, in symmetric networks, sectoral prices Pj are the same across sectors, the

relative price of the intermediate input price index becomes PMi
Pj

=
(∑N

j=1 ω
%M εM
ji

) 1
1−εM

which we plug it into the above equation, under the assumption of εQ = εM , to get

PjMji

PM
i Mi

=
ω
%M εQ
ji∑N

j=1 ω
%M εM
ji

,

which has the following property

N∑
j=1

PjMji

PM
i Mi

=
N∑
j=1

ω
%M εQ
ji∑N

j=1 ω
%M εM
ji

= 1.

Let us come back to the algorithm. Given an initial value ω0
ji and values for %M and εQ,

we can solve for prices
(
Pj
PMi

)0
to obtain the model implied

(
PjMji

PMi Mi

)0
. Using the observed

input share
(
PjMji

PMi Mi

)data
we can solve for our next value for ω1

ji as follows

ω1
ji =

( PjMji

PM
i Mi

)data((
Pj
PM
i

)0
)εQ−1

 1
%MεQ

.

Suppose that ω0
ji implies that

(
PjMji

PMi Mi

)0
<
(
PjMji

PMi Mi

)data
, then, given that %MεQ > 0, our new

guess ω1
ji > ω0

ji to bring model-implied shares closer to the data. Therefore, the algorithm
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continues until the maximal deviation |
(
PjMji

PMi Mi

)0
−
(
PjMji

PMi Mi

)data
| (for all ij combinations)

is not larger than < ε = 10e−7.

6.3 Additional quantitative exercises

Here we provide two alternative calibrations of εQ and %M . We focus on the conservative
scenario that matches an empirical correlation between log GDP per capita and network
density of 0.37 (column 3 of Table 2). When εQ = 1.3, %M = 0.5923, we find that Thailand’s
GDP would increase by 9.06% if it had Denmark’s network diversification. If εQ = 1.2, then
%M = 0.726, in which case Thailand’s GDP would increase by 9.21% if it had Denmark’s
intermediate input share diversification.
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