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Motivation

- Research on networks in economics (macro/trade) has exploded recently
- Networks considered: input-output networks, investment network, trade credit networks,
banking networks, cross-country trade/financial networks

- Two main approaches to studying the importance of network structures
1 Empirical: VAR or FAVAR-like models to describe/decompose/forecast

- Diebold and Yilmaz (2014), Mlikota (2023), Barigozzi et al. (2023), Grant and Yung (2024), Miao et
al. (2023)

2 Structural: Quantitative multisector business cycle models with production networks
- Horvath (1998, 2000), Foerester, Sarte and Watson (2011), Atalay (2017), Herskovic (2018), Pasten,

Schoenle, and Weber (2020), vom Lehn and Winberry (2022)

We propose a semi-structural approach to jointly estimate spillovers—from observed
networks—and unobserved common factor(s).
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What We Do

- Estimate the following model:

yi,t =
P
∑
s=1

N
∑
j=1

As,ijyj,t−s + ΛiFt + ui,t.

This is a high-dimensional problem. Estimating N2 spillover coefficients, R factors and
RxN factor loadings.

Solution: guided by theory, use observed networks (Bt) to guide the estimation of
spillovers As,ij. Specifically, define A = βBt. Estimate β (could be scalar or a vector)
using observed Bt.

Applications: Today: Sectoral price dynamics and the role of input-output networks. In
progress, role of financial linkages and/or trade linkages in cross-country GDP dynamics
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What We Find

- From Montecarlo exercises, FANVAR provides a significant improvement with respect to
VAR and Factor models

- VAR models, omitting factors, overstate the role of spillovers
- Factor models overstate the role of common factors in the presence of networks

- Application to US PPI inflation. Compare FANVAR to FAVAR from Boivin, Giannoni, and
Mihov (2009)

- What Boivin et al. (2009) characterized as sluggish response to aggregate shocks, in our
approach are sluggish sectoral spillovers (Minton and Wheaton, 2024)

- Using more recent sample, we show that spillovers played a key role during COVID-19
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Contribution to the Literature

- Methodological: Factor models (Geweke, 1977; and Sargent and Sims, 1977), Vector
Autoregression (VAR) models (Sims, 1980), Factor-VAR (Bernanke, Boivin, and Eliasz,
2005), Panel Models with Interactive FE (Moon and Weidner, 2023), High-dimensional
VAR with factors (Mlikota, 2023; Barigozzi et al., 2023, Maio, Phillips, Su, 2023)

- Our approach uses network information to our disposal to study spillovers while accounting
for common factors

- Semi-structural applications: Causes of the Great Recession (Altinoglu, 2019; Li and
Martin, 2019); Reduction in comovement post-1984 (Foerster, Sarte, and Watson, 2011,
Garin et al., 2019, vom Lehm and Wimberry, 2022)

- Our approach can accommodate many networks (or models) and freely estimate their relative
importance
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Our approach
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Model

Let the dynamics of unit i at time t (e.g., firm i’s output growth or country i’s inflation rate)
be expressed as

yi,t = ∑
s

∑
j

As,ijyj,t−s + Πt + ui,t,

Πit = ΛiFt

- ∑s ∑j As,ijyj,t−s accounts for dynamic spillovers between units
- Πit = ΛiFt is the unobserved common factor structure
- uit are unit-specific idiosyncratic errors, which are orthogonal to yj,t−s and Πt. uit can be
mildly correlated across units.
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Estimating Network Spillovers and Common Factors
Moon and Weidner (2023) estimator applies when A is known up to a fixed number of unknown
constants (e.g., A = βB) where β captures the intensity of spillovers.
Minimize the convex objective function with respect to β and Π,

argminβ,Π


N
∑
i=1

T
∑
t=1

(
yi,t −

P
∑
s=1

N
∑
j=1

As,ijyj,t−s − Πit

)2

︸ ︷︷ ︸
LS

+ λp(Π)︸ ︷︷ ︸
Rank

 ,

As,ij =
K
∑
k=1

K
∑
l=1

1(k(i) = k)1(k(j) = l) βkl︸︷︷︸
Unobserved

· Bs,ij︸︷︷︸
Observed

,

where λ ≥ 0 is a tuning (penalty) parameter selected in a data driven manner and p(Π) is the sum of
the singular values of Π. K is the number of clusters assumed to estimate the spillover coefficients
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Practical implementation

- Using pilot OLS estimate of A choose the optimal number of factors R

- Iterative algorithm
- given R, estimate the common factor structure using PCA

- Use the factors to estimate the spillover coefficients

- Moon and Weidner (2023) establish
√

NT consistency of β using this iterative estimation
procedure
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Montecarlo Simulations
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The Montecarlo Experiment

The data-generating process follows

yi,t = ∑
j

A1,ijyj,t−1 + Πt + ui,t,

where the true network A = βB in which B is drawn from a Bernoulli distribution (for each
sample t), Erdos-Renyi with p = log(N)/N. We assume there is one common factor. We set
N = 100,T = 100.

We vary the degree to which the observed network B generates spillovers (β). Then, using B,
we estimate β and Πt

We also estimate β assuming we do not fully observe B
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True vs Estimated Spillover

yi,t = ∑
s

∑
j

βBs,ijyj,t−s + Πt + ui,t,
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True vs Estimated Spillovers

yi,t = ∑
j

βB1,ijyj,t−1 + Πt + ui,t,
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True vs Estimated Spillover if B not fully observed (only 90 % of links)
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True vs Estimated Spillover if B not fully observed (only 90 % of links)
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Inference and Forecasting
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Impulse Response Analysis

Rewrite the system and provide more structure to the factors

Yt =ΦYt−1 + ΛFt + vt,

Ft =ψ(L)Ft−1 + ΩWt + ut,

where Wt is a set of observable macro controls (potential factors). Now we can obtain the
IRFs from aggregate shocks to W, which are observed factors such as US monetary policy, oil
prices or global financial conditions.

∂Yt
∂Wit−K

=

(
K
∑
j=0

ΦK−jΛψj
)

Ωi.
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IRF to an aggregate shock W

Figure: Impulse Response to aggregate shock: different underlying network
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Baseline: N=100,T=100, 1 factor, Erdos-Renyi with p = log(N)/N
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Application to sectoral inflation dynamics
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FANVAR vs. FAVAR

- Bernanke, Boivin, and Eliasz (2005) proposed the Factor Augmented Vector
Autoregression (FAVAR)

- FAVAR augments the information of a VAR using pre-estimated factor(s) from large
disaggregated time-series data

- Boivin, Giannoni, and Mihov (2009), and many others recently, have used it to
understand inflation dynamics and monetary policy transmission
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Data

- 154 sectoral PPI series for the US
- Sample 1: 1970m1-2005m6 (original Boivin et al., 2009)

- Sample 2: 1990m1-2024m6 (our new data)

- Match these series to IO tables to obtain our measure of observed linkages
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VAR (OLS) vs FANVAR
- Assume A = βB⊤ where B is the observed IO matrix.

d lnYt = βB⊤d lnYt−1 + Πt + Ut,

- Estimates of β (one common factor chosen)

OLS M+W
β 0.71 0.69

(0.021) (0.021)
Obs 54,362 54,362

- Results suggest that dynamic price spillovers are 70% of those implied by the IO network
(generally omitted, even in the theoretical/quantitative literature on production networks)

- β = 0.11 if use Leontief inverse for B, meaning delayed indirect effect might take more
than one period to materialize
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Factor Models vs FANVAR
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Decomposing the Sources of Sectoral Inflation
Standard deviation (in percent)

Inflation Common Factors Sector-Specific Spillovers
FAVAR
PPI Average 1.36 0.38 1.30 -
Median 0.92 0.31 0.88 -
Standard deviation 1.16 0.21 1.15 -
FANVAR
PPI Average 1.36 0.17 1.28 0.23
Median 0.92 0.05 0.90 0.14
Standard deviation 1.16 0.66 0.99 0.25

Note: this table reports moments of sectoral inflation as well as its different components (common factors,
idiosyncratic shocks, and spillovers). The FAVAR results are those from Boivin et al. (2009). The FANVAR
results are obtained using our approach using the same PPI series and the US input-output tables in 2002 to

inform the existence of network effects.
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Sample 1990m1-2024m6

Update PPI series and IO tables. Re estimate:

d lnYt = βB⊤d lnYt−1 + Πt + Ut,

Estimates of β (one common factor chosen)

OLS M+W
β 0.93 0.77

(0.017) (0.019)
Obs 63,602 63,602

Increased importance of spillovers, increasing the overestimation from OLS.
Using Leontief for B gives 0.17 (>0.11).
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Factor Models vs FANVAR

Factor models overstate the role of common shocks (factor loadings)
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Inflation during 2018-2024: factor models

Note: This figure plots the Factor Model decomposition of average PPI for the period 2018m01-2024m6.
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Inflation during 2018-2024: FANVAR

Note: This figure plots the FANVAR decomposition of average PPI (monthly) growth for the period
2018m06-2024m6. 28 / 48



Sectoral IRFs from Monetary Policy and Oil price shock
Using externally identified shocks to monetary policy and oil prices

∂Yt
∂Wit−K

=

(
K
∑
j=0

ΦK−jΛψj
)

Ωi
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Conclusion

- We propose an econometric approach that jointly identifies general spillovers, using
observed networks and unobserved common factor(s)

- Useful to understand the sources of macroeconomic fluctuations (prices, GDP, etc) from
disaggregated and high-dimensional data

- Applied to US sectoral inflation, our approach highlights the relevance of linkages and
dynamic spillovers
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Thank you
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Variance decomposition from PCA, OLS and joint estimator

PCA OLS Joint
Common Factors 58% NA 36%
Idiosyncratic shocks 42% 68% 34%
Spillovers NA 32% 30%
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Application II:
Common factor vs linkages in commodity prices
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Commodity price comovement

Figure: Monthly real commodity price index for 60 EMEs, Fernández, González, and Rodriguez (2018)

Algeria, Argentina, Australia, Austria, Belarus, Bolivia, Botswana, Brazil, Bulgaria, Cameroon, Canada, Chile, Colombia, Costa Rica, Ivory Coast (Côte d’Ivoire),
Croatia, Denmark, Dominican Republic, Ecuador, Egypt, El Salvador, Gabon, Georgia, Ghana, Guatemala, Honduras, India, Indonesia, Iran, Jamaica, Jordan,
Kazakhstan, Kuwait, Lithuania, Malaysia, Mexico, Mongolia, Morocco, New Zealand, Niger, Nigeria, Norway, Oman, Pakistan, Panama, Paraguay, Peru,
Philippines, Russia, Saudi Arabia, South Africa, Thailand, Trinidad and Tobago, Tunisia, Ukraine, United Arab Emirates, Uruguay, Venezuela, Vietnam.
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Spillovers in commodity price fluctuations

Use three versions of observed linkages based on bilateral trade linkages from the Direction of
Trade Statistics (DOTS)

Table: Importance of common factors in cross-country commodity price indexes

Model Factors Idiosync. Spillovers
PCA 77% 23% NA
Joint using M1 49% 23% 28%
Joint using M2 49% 23% 28%
Joint using M3 42% 16% 42%

Note: M1 uses trade linkages between country i and country j as follows. Mij represents the observed links between country i and country j. In particular, M1ij is
the ratio of the sum between exports from i to j and imports of i from j (exportsij + importsij) and total trade of countries i and j. M2ij is the ratio of the sum
between exports from i to j and imports of i from j (exportsij + importsij) and the GDP of country i. M3ij is the ratio of the sum between exports from i to j and
imports of i from j (exportsij + importsij) and the GDP of country j.
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Application III:
Drivers of global inflation
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Drivers of global inflation
it = ATit−1 + Πt + Ut

Figure: Quarterly headline CPI inflation 60 countries from Ha, Kose, and Ohnsorge. (2023)
Countries: Argentina, Australia, Austria, Burundi, Belgium, Burkina Faso, Bahamas, Bolivia, Canada, Switzerland, China, Ivory Coast (Côte d’Ivoire), Cameroon,
Colombia, Cyprus, Germany, Denmark, Dominican Republic, Ecuador, Egypt, Spain, Finland, Fiji, France, Gabon, United Kingdom, Greece, Guatemala, Honduras,
Haiti, Indonesia, India, Ireland, Iceland, Italy, Jamaica, Japan, South Korea, Luxembourg, Morocco, Mauritius, Malaysia, Niger, Netherlands, Norway, New
Zealand, Pakistan, Peru, Philippines, Portugal, Paraguay, Singapore, El Salvador, Sweden, Thailand, Tunisia, Turkey, Tanzania, Uruguay, United States of
America, Samoa, and South Africa. 37 / 48



Results with homogeneous spillovers: the UK

Figure: Decomposition of UK (left) and France (right) inflation
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Estimate heterogeneous spillovers: USA-Europe-ROW

Figure: Heterogeneous spillovers
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Results with heterogeneous spillovers: the case of Korea

Figure: Decomposition of Korea’s inflation. Homogeneous (left) and heterogeneous (right) spillovers
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Counterfactual analysis

Suppose we have our estimated model

yt = Âyt−1 + Π̂t + Ût,

We can analyse responses to
- another network structure Ã that could prevail
- or the propagation of an idiosyncratic shock (e.g., wildfires in Canada) or a common
shock (e.g., COVID-19). In this case we could use Â to construct impulse response
functions arising from some counterfactual shocks Ũt, ..., Ũs

.
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A Well-Known Structural Model: Carvalho (2007)

There is labor, capital, and intermediate inputs. Capital depreciates in one period and is
produced using same sector’s output. We have

d lnYt = (I − A)−1αd lnYt−1 + (I − A)−1ϵt,

where αd is a matrix with sectoral capital shares in its diagonal and zero otherwise.
Back
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Moon and Weidner (2023): First estimated factor and loadings
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Practical implementation

Estimate number of factors R (assume s = 1 for exposition only)

R̂ =
min(N,T)

∑
r=1

1
{

sr
(
Yt − Â∗Yt−1

)
> λ̂

}
where λ̂ is a thresholding term. The function sr(·) returns the rth singular value of a matrix and Â∗ is
based on the pilot estimator β̂∗ is defined by:

β̂∗ = arg min
β∈R

∥Yt − AYt−1∥1 ,

where ∥.∥1 is the nuclear norm.
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Practical implementation

The penalty term (λ̂) is chosen as follows:
1 Choose an upper threshold for the R: Rmax.
2 Given the estimator β̂∗,

(
Λ̂, F̂

)
∈ argmin

Λ∈RN×Rmax ,F∈RT×Rmax

∥∥∥Yt − Â∗Yt−1 − ΛFT
∥∥∥2

2
.

3 Compute residuals,
Ê∗ = Yt − Â∗Yt−1 − Λ̂F̂T.

4 Choose,
λ̂ = K∥Ê∗∥∞,K > 2 (use 4).
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Practical implementation
Once we have estimated the number of factors (R0) following the steps above, the next step is an
iterative approximation algorithm taking the number of factors as known:

1 Set β̂(s) = β̂∗ for s = 0.
2 Estimate the common factor structure by the principal component method given Yt − Â(s)Yt−1:(

Λ̂(s+1), F̂(s+1)
)
∈ argmin

Λ∈RN×R̂,F∈RT×R̂

∥∥∥Yt − Â(s)Yt−1 − ΛFT
∥∥∥2

2
.

3 Estimate β̂(s+1):

β̂(s+1) = argmin
β

min
g∈RT×R̂,h∈RN×R̂

∥∥∥Yt − AYt−1 − Λ̂(s+1)gT + hF̂(s+1)T
∥∥∥2

2
.

MW show that this estimator (β̂(s)) converges to β0 at a rate of
√

NT under certain assumptions.
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Estimating Unobserved Networks and Common Factors - High Dimensional

If A is not known up to a fixed number of unknown constants we have a high dimensional problem.
Propose to minimize a convex objective function such as the following with respect to (As)s=1,...,P and
Π,

argminA,Π


N
∑
i=1

T
∑
t=1

(
yi,t −

P
∑
s=1

N
∑
j=1

As,ijyj,t−s − Πit

)2

︸ ︷︷ ︸
OLS

+ λ1
N
∑
i=1

N
∑
j=1

p1(i, j)︸ ︷︷ ︸
Sparsity

+ λ2p2(Π)︸ ︷︷ ︸
Rank

 ,

where λ1 ≥ 0,λ2 ≥ 0 are tuning parameters.

The sparsity function is p1(i, j) =
(

∑P
s=1 (As,ij − A0,ij)

2
)1/2

. The matrix A0 could be zeros or a prior
network up to a fixed number of constants. Additional convex restrictions can be added to A.
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More complex economy

Assume VARMA (1,1) structure in Foerster, Sarte, and Watson (2011)

d lnYt = ϱd lnYt−1 + ΘUt−1 + ΠaUt,

where ϱ, Θ, and Πa are functions of IO, investment network, factor shares, and
consumption-capital policy rules. Assume that capital fully depreciates after a period to get

d lnYt = (I − AT)−1αdΘ̃d lnYt−1 + (I − AT)−1ϵt,

More generally, we could express a VARMA(1,1) as a VAR(∞) in which

d lnYt =
∞

∑
l

Ξid lnYt−l + Ut,

Back
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