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Abstract

This paper shows that GDP growth volatility declines with production network

diversification. To account for this evidence, I build a multisector model with CES

technologies and a cost of complexity in the bundle of intermediates. Production

network diversification decreases volatility when intermediate inputs and labor are

substitute inputs. U.S. sectoral data suggest that labor and intermediates are sub-

stitutes in service sectors. Therefore, a calibrated model that then also matches each

country’s production network can quantitatively generate the empirical patterns. The

model also explains why service-oriented countries are less volatile: service sectors

have a more diversified set of suppliers.
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1 Introduction

The production process, such as that of cell phones in Korea, entails complex connec-

tions between firms in different sectors of the economy. Samsung, for example, uses not

only chips, plastic, and financial services, but also equipment, water, and gas. Every

economy produces different goods and services, which then translate into a particular

structure of input-output connections. What features of the production network struc-

ture amplify or mitigate sectoral shocks? The current literature highlights the role of the

intensity of input-output connections—e.g., the existence of star intermediate input sup-

pliers—while ascribing no role to production network diversification—e.g., the number

of non-zero input-output connections. In this paper, I revisit these results, empirically

and theoretically.

From an empirical standpoint, this paper shows that production network diversification—

as measured by the fraction of non-zero input-output connections or by the diversifica-

tion of the sectoral intermediate input bundle—is a key driver of countries’ sales shares

concentration (as measured by the Herfindahl-Hirschman Index (HHI)) and GDP growth

volatility. Specifically, in a panel of 48 OECD and non-OECD countries for the period

1970-2014, I document two main facts: in countries with a more-diversified production

network, i) sales shares are less concentrated, and ii) GDP growth volatility is lower.

From a more theoretical standpoint, I generalize the canonical economy of Acemoglu

et al. (2012) to help explain the cross-country patterns I document. I allow for non-

unitary elasticities of substitution in production—in particular, non-unitary elasticity

between the bundle of intermediate inputs and the labor input. I then emphasize the

role played by the intermediate input bundle diversification embedded in nested CES

production technologies with input-output weights. In this environment, not only sec-

toral supplier importance, but also the diversification of the network, matters for the

propagation and amplification of sectoral shocks. Using U.S data, I calibrate the model to

match each country’s input-output structure and estimate elasticities of substitution in

production. To the extent that U.S sectoral technologies also describe sectoral technolo-

gies across countries, I use the model to perform several quantitative exercises.

The main result in this paper is as follows. The model economy suggests that a higher

diversification of the production network reduces the economy’s HHI of sales shares and,

therefore, volatility, as long as production technologies display high substitutability be-

tween intermediate inputs and labor. Standard CES production technologies with input-

output weights embed a cost of complexity in the bundle of intermediates. In particular,

firms that source intermediate inputs from a more-diversified set of suppliers display a

complexity cost. Therefore, all else equal, when labor and intermediates are substitute

inputs, an increase in production diversification leads to an increase in labor demand
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to overcome the complexity cost. This generates a decline in firms’ intermediate input

shares which then reduces sectoral interdependence and mitigates the effect of sectoral

shocks along the production chain.

Using U.S. sectoral data, I show that the elasticity of substitution between labor and

intermediates is larger than one in service sectors. I then use countries’ sectoral data on

intermediate input shares and intermediate input bundle diversification to show that, as

predicted by the model, sectors with more-diversified intermediate input bundles dis-

play lower intermediate input shares. This effect is stronger in service sectors, consis-

tent with their higher production flexibility. I also show that service sectors have more-

diversified intermediate input bundles than do non-service sectors. This, together with

the fact that services have higher production flexibility, can help explain, through the lens

of the model, why service sectors display lower intermediate input shares and, therefore,

why service-oriented economies are less volatile.1

The model is able to qualitatively and quantitatively replicate the fact that production

network diversification is associated with lower macroeconomic volatility. The calibrated

model, which matches each country’s input-output structure, is quantitatively successful

in replicating the observed empirical patterns. The model’s implied relationship among

production network diversification, service share, and volatility is of an order of magni-

tude similar to that observed in the data.

Contribution to the literature: This paper contributes to the literature on produc-

tion networks and aggregate fluctuations in Horvath (1998), Foerster et al. (2011), Ace-

moglu et al. (2012), Carvalho et al. (2016), Atalay (2017), and Baqaee and Farhi (2019).

With respect to these studies, this paper illustrates the importance of a new production

network feature, production network diversification.2 In doing so, I emphasize the rel-

evance of deviating from homogeneous and Cobb-Douglas sectoral technologies and of

taking into account the production complexity of using a more-diversified intermediate

input bundle.3 This paper also provides international evidence of the importance of the

input-output network structure in shaping the HHI of sectoral sales and macroeconomic

volatility.4

1Moro (2015) show that the lower intermediate input share in service sectors can help explain why
service-oriented economies are less volatile.

2In an environment with endogenous production networks, Acemoglu and Azar (2020) study the re-
lationship between production network diversification—as measured by network density—and develop-
ment. Moreover, in a Cobb-Douglas economy, Herskovic (2018) studies the role of production diversifica-
tion or sparsity in shaping asset prices.

3The relationship between production complexity—through higher production diversification—and the
macroeconomy provided in this paper is related to those proposed by Costinot et al. (2013) and Jaimovich
et al. (2017). The former study postulates that lengthier and more complex production processes require
more inputs to produce a given level of output, while the latter documents that higher-quality products
require a higher labor share.

4A series of recent paper have studied the relationship between the structure of inter-sectoral linkages
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This paper also contributes to the literature on sectoral composition and macroeco-

nomic volatility in Moro (2012), Moro (2015), Koren and Tenreyro (2007), Carvalho and

Gabaix (2013), di Giovanni and Levchenko (2012), and Gabaix (2011). These papers

highlight the importance of sectoral composition and the HHI of sales shares in driv-

ing macroeconomic volatility. This paper complements the aforementioned papers by

providing empirical and theoretical support for the idea that the HHI of sales shares is

shaped by the production network structure, with an emphasis on production network

diversification. This paper also complements previous studies by showing that the lower

intermediate input share in service sectors can be explained by the high production di-

versification and high production flexibility observed in services.

Finally, this paper contributes to the literature on production diversification and volatil-

ity in Koren and Tenreyro (2013) and Krishna and Levchenko (2013). Different from

these papers—in which production diversification shapes volatility via the law of large

numbers (LLN), regardless of the details of the production function and in a framework

without input-output linkages—this article proposes a different mechanism. A more-

diversified network of producers reduces volatility only when the substitutability be-

tween intermediates and labor is high, and the mechanism operates through lowering

intermediate input shares, which then mitigate the effect of sectoral shocks along the

production chain.5

2 Empirical motivation

In this section, I document two empirical observations between countries’ production

network structure and the HHI of sales shares and macroeconomic volatility. The main

motivation behind the empirical analysis in this section is based on Gabaix (2011) and

Acemoglu et al. (2012). Gabaix (2011) shows that the HHI of sectoral sales share is a

sufficient statistic for macroeconomic volatility, while Acemoglu et al. (2012) show that

the structure of intersectoral linkages—in particular, sectoral outdegree concentration—

shapes the HHI of sectoral sales.

The results in this section show: i) that the HHI of sectoral sales shares is decreasing in

countries’ production network diversification—as measured by the number of non-zero

input-output connections or by the average sectoral intermediate input bundle diversifi-

and macroeconomic outcomes, such as a country’s aggregate productivity and income level, as in Jones
(2011), Bartelme and Gorodnichenko (2015), and Fadinger et al. (2015). The key difference between those
studies and this paper is that the focus here is on business cycles instead of income level.

5The LLN does not drive the results in this paper as the number of sectors N is fixed. Even when indus-
tries differ in terms of how connected they are to other sectors, it is not clear that a less (more) diversified
network amplifies (mitigates) shocks. If sectors use intermediates from only one other sector, there still
exist indirect connections embedded in the input-output network. These connections render each sector
vulnerable to other sectors’ idiosyncratic shocks.
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cation; and ii) that GDP growth volatility is decreasing in countries’ production network

diversification. These empirical observations are not implied by the existing literature

on multisector models with input-output linkages. Indeed, Dupor (1999) and Acemoglu

et al. (2012) show that, with Cobb-Douglas production technologies, production network

diversification plays no role in amplifying or mitigating the effect of sectoral productivity

shocks.6

2.1 Data

The variables of interest are i) the HHI of sectoral sales shares and ii) the volatility of GDP

growth. I measure the HHI using OECD data on sectoral gross output and value added

for each country for the period 1995-2011. To measure macroeconomic volatility, I use

countries’ real GDP at constant national prices in millions of 2011 U.S. dollars from the

Penn World Tables 9.0 (rgdpna) for the period 1970-2014. To characterize the production

structure, I use input-output matrix data from the OECD input-output database.7 For

each country, I have information for 33 sectors of the economy for the period 1995-2011.

The sample retains the countries in the OECD database for which I have real GDP data

since 1970, resulting in a final sample of 48 countries—25 with developed economies and

23 with emerging economies. I also use countries’ GDP per-capita data from the IMF

databases.

2.2 Heterogeneity in input-output structure

Let Ω̃ be an N by N matrix that describes the observed input-output structure of the

economy. An element ω̃ij is an observed input-output share that represents the share of

intermediate inputs shipped from sector i to sector’s j total expenditure on intermediates.

These input-output shares are not symmetric; it might be the case, for example, that

sector i provides inputs to sector j, but sector j does not supply intermediates to sector

i. The column i sum of Ω̃ equals 1, as total intermediate expenses must be allocated to

some (all) sector(s) of the economy. The row j sum represents how important sector j is

as an intermediate input supplier to the economy as a share of other sectors’ intermediate

expenditures.

6Atalay (2017), Carvalho et al. (2016), and Baqaee and Farhi (2019) generalize the model in Acemoglu
et al. (2012) by using CES production technologies, as in the present paper. However, the aforementioned
papers do not focus on studying the relationship between production network diversification and aggregate
volatility.

7In particular, I collect the Input-Output Tables ISIC Rev. 3 available at http://www.oecd.org/sti/
ind/input-outputtables.htm. While a large fraction of countries in the sample have official data for the
whole period (1995-2015), in some years, some countries have imputed information. I use only official
information. For example, when I claim to use data for 2011, if a country has imputed information for
2011 but official data only for 2010, I effectively use 2010 data.
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Figure 1 illustrates the input-output structures of the U.S and Greece. Each row repre-

sents an industry supplying intermediates of production, while each column represents

industries using intermediates to produce final output. I report the logarithm of indus-

tries’ intermediate input shares as a fraction of total intermediate input expense. Bright

(yellow) colors represent high shares, while dark (blue) colors are small shares. The pro-

duction network of the U.S. appears more diversified than that of Greece. Sectors in the

U.S are more interconnected (panel a), while in Greece (panel b), sectors are more iso-

lated. In particular, the U.S. has 264 more non-zero input-output shares than Greece,

which is equivalent to setting seven entire columns—out of 33—of the U.S. input-output

matrix to be almost zero.8 Regarding the intensity of connections, the U.S. and Greece

have few sectors that supply intermediate inputs to all other sectors. This is expressed

by few very bright rows of the input-output matrix (outdegrees) in Figure 1. Wholesale

trade, Transportation, Financial Intermediation, and R&D sectors are central suppliers in

both countries.

Figure 1
Production network of the U.S. and Greece

Note: This figure plots the U.S’s and Greece’s input-output structure in 2011. Log intermediate input shares are log(ω̃ij + 1e7).
Bright-yellow colors indicate large intermediate input shares, while dark-blue colors indicate small intermediate input shares.

In the next section, I describe the production network measures I use to characterize

each country’s production network structure. I consider two production network features

in my analysis: i) the concentration of sectoral outdegrees, and ii) the diversification of

the production network.

8Throughout the paper, and to avoid counting spurious connections due to data harmonization, I de-
fine non-zero input-output connections as shares that are larger than a small threshold. The benchmark
threshold for ωij is 0.001.
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2.2.1 Outdegrees concentration

The outdegrees concentration describes the extent to which a country has few star inter-

mediate input suppliers. This production network measure is theoretically founded (see

Horvath (1998), Acemoglu et al. (2012), and section 3.1 in this paper) and describes how

sectoral productivity shocks amplify and propagate from upstream sectors (intermediate

input suppliers) to downstream sectors (intermediate input users), via affecting the cost

of intermediates in production. The concentration of outdegrees is defined as follows:

Outdegree =

√√√√ N∑
j=1

(
(I − Γ̃ )−1β̃

)2

j
, (1)

where Γ̃ is the observed N by N matrix of input-output shares. An element γ̃ij of Γ̃

represents the cost share of intermediates from sector i in total gross output of sector

j, and β̃ is the observed N dimensional vector of sectoral final consumption shares. The

Outdegree measure in Equation (1) captures the concentration of sectors’ direct and indi-

rect supplier importance, contained in the vector of Leontief inverse elements (I − Γ̃ )−1β.

Intuitively, economies with higher outdegrees will be more volatile as sectoral shocks, es-

pecially shocks to star supplier sectors, will be amplified and propagated more strongly

through the network.

2.2.2 Production network diversification

Production network diversification describes the extent to which sectors of the economy

rely on few versus many intermediates to produce. Intuitively, in a more-diversified net-

work, sectoral shocks will be spread out among more sectors and will have smaller aggre-

gate effects. However, as Dupor (1999) and Acemoglu et al. (2012) show, this is not the

case in production network models with Cobb-Douglas technologies.9

I consider two different measures to proxy for production network diversification.

First, I consider the production network density:

Density =

∑N
i=1

∑N
j 1[ω̃ij > ω]

N (N − 1)
, (2)

where 1[ω̃ij > 0] is an indicator function that counts input-output connections that are

greater than a small threshold ω ∈ [0.001,0.01]. When the Density is 0, the economy

displays 0 non-diagonal links above ω out of N (N − 1) potential links, whereas when

9Koren and Tenreyro (2013) and Krishna and Levchenko (2013) have also studied the role of production
diversification, though in a theoretical context absent of input-output linkages. The authors show that
production diversification reduces volatility. The mechanism operates through the LLN via increasing the
number of sectors.
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the Density is 1, all the potential non-diagonal connections (N (N − 1)) are larger than

the threshold. This network measure is widely used in network science and captures the

notion of sparsity studied in Dupor (1999) and Acemoglu et al. (2012).

Second, motivated by the model’s implications in section 3, I also consider countries’

diversification of sectoral intermediate input shares:

Divers =
1
N

N∑
j=1

( N∑
i=1

ω̃εMij
) 1

1−εM , (3)

where εM is the elasticity of substitution between intermediates. Note that for any non-

unitary value of εM , Divers is always increasing in the diversification of the vector of

sectoral intermediate input shares {ωij}Ni=1.10 Levchenko (2007) uses a similar diversifi-

cation measure, though in a very different context and from an atheoretical perspective.

The author takes the average sectoral Herfindahl index of intermediate input shares and

multiplies it by -1 (to describe diversification instead of concentration). Herskovic (2018)

also derives a similar diversification measure (for εM = 1) to study asset prices’ determi-

nation.

Figure 2 depicts the cross-country distribution of production network structure. In

particular, I obtain the average of the production network measures in years 1995, 2005,

and 2011. Figure 2 panel a shows the cross-country distribution ofOutdegree in Equation

(1). An economy with homogeneous sectoral outdegrees, where every sector has the same

Leontief inverse element, would display an Outdegree of about 0.33. On the other hand,

an economy in which one sector supplies (directly and indirectly) 18% of total intermedi-

ates, while other sectors equally split the supply of the remaining 82%, would display an

Outdegree of about 0.45. Figure 2, panel a shows that 65% of the countries in the sample

display an Outdegree larger than 0.45, implying the existence of star suppliers in most

countries in the sample.11

Figure 2, panel b depicts the histogram of Density in Equation (2) for the 48 countries

in the sample. There is substantial heterogeneity in the extent to which sectors interact in

different countries. The average Density is 0.72, indicating that, for the average country

in the sample, 72% of non-diagonal input-output shares are non-zero. There is substan-

tial cross-country heterogeneity in Density, which is expressed by an interquartile range
10With unitary elasticity between intermediates (εM = 1), the diversification measure becomes

Divers =
1
N

N∑
j=1

(∏
i=1

ω̃
−ω̃ij
ij

)
,

which is also increasing in the diversification of the intermediate input bundle. In this case, it is also the
case that the observed intermediate input share ω̃ij equals the Cobb-Douglas parameter ωij .

11Dungey and Volkov (2018) use the same OECD input-output data and document that the wholesale
and R&D sectors are dominant in most countries in the sample.
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of 0.2.

Panel c of Figure 2 displays the average of intermediate input diversification across

countries in Equation (3), assuming that εM = 0.5.12 An economy in which the average

sector has a fully diversified intermediate input bundle (ω̃ij = 1/N for all j) would display

a Divers index of N = 33. On the other hand, if the average sector of the economy uses

only one intermediate input (ω̃ij = 1 and ω̃lk = 0 for (k, l) , (i, j)) the Divers index is 1. We

can see substantial heterogeneity in production network diversification across countries.

The average Divers index is 16.03 with an interquartile range of 3.74.

We observe in Figure 2 a high similarity in the cross-country distribution of Density

and Divers. It is direct from Equations (2) and (3) that a production network with low

(high) Density also displays low (high) Divers.

Figure 2
Cross-country distribution of production structure

panel a panel b panel c

Note: This figure plots the cross-country distribution of outdegree concentration (panel a), production network density (panel b),
and production network diversification (panel c). For each country, the average input output structure of years 1995, 2005, and 2011

is considered.

While the goal of the paper is not to determine the drivers of production network

structure, but to understand how the production structure affects aggregate volatility, it

is interesting to examine the relationship between production network structure and de-

velopment. One could imagine that more-developed countries display more-diversified

production structures.13 In Table 1 we can see that, while there is not a clear relation-

ship between GDP per-capita and production network structure, there is a relationship

between the share of services in GDP, typically used as a proxy for development, and pro-

duction network structure. Countries with a higher share of services in GDP display less

concentrated outdegrees, denser production networks, and more diversified intermediate

input bundles. I come back to this in Section 4, where I use cross-country sectoral data

12In section 4, I estimate εM ≈ 0 for U.S. non-service sectors and εM ≈ 1 for U.S. service sectors. Thus,
εM = 0.5 is a simple average. The same results hold for any value of εM .

13Krishna and Levchenko (2013) show a positive relationship between production diversification, as mea-
sured by the number of intermediates used in production, and GDP per-capita. However, the authors use
only information for manufacturing industries.
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to investigate how diversified service sectors are in production.14 I also observe that pro-

duction network density and production diversification are highly correlated (correlation

of 0.955), which expresses the fact that both are good measures of countries’ production

network diversification.

Table 1
Production Network Structure and Development

VARIABLES GDPpc Service share Outdegree Density Diversification

GDPpc 1

Service share 0.2576* 1

(0.0771)

Outdegree -0.1422 -0.3295** 1

(0.3350) (0.0222)

Density -0.0581 0.3192** -0.1145 1

(0.6946) (0.0270) (0.4382)

Diversification -0.0486 0.3260** -0.1035 0.9816*** 1

(0.7431) (0.0503) (0.4837) (0.0000)

Note: This table presents the pairwise correlations between production network structure measures and

development, as measured by GDP per-capita and by the share of services in GDP. The p-values are reported

in parentheses. *** Significant at the 1-percent level; ** Significant at the 5-percent level; * Significant at

the 10-percent level.

Empirical Observations

Here, I present the main empirical observations that motivate the theoretical model.

These observations relate countries’ production network diversification to countries’ HHI

sectoral sales shares and aggregate volatility. I divide the sample into three sub-periods:

1970-1995, 1996-2005, and 2006-2014.15

Empirical Observation 1: The HHI of sectoral sales shares declines with production

network diversification.

The HHI of sectoral sales shares is defined as follows:

14The definition of service sectors includes OECD sectors 19, 21-33 in Table 8.
15Given that the OECD input-output data cover the period 1995-2011, when official data are available,

I use the end of period HHI and production network measures. As explained in footnote 7, when official
input-output data are not available at the end of the sub-period, I use the official data for the year that is
closest to the end of period.
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HHI =

√√√√ N∑
j=1

( Sj
GDP

)2
,

where Sj are sector j’s sales.

The relationship between the HHI of sectoral sales shares and production diversifica-

tion is illustrated in Table 2. There is a strong negative relationship between production

network diversification (Density and Divers) and the HHI of sectoral sales shares. More-

over, as Acemoglu et al. (2012) predicts, there is a strong positive relationship between

the concentration of sectoral outdegrees (Outdegree) and the HHI of sectoral sales shares.

Industries that are more central suppliers of intermediates are also larger in equilibrium.

Therefore, a more concentrated Outdegree distribution generates a more concentrated

HHI of sectoral sales shares. In Appendix A (Tables 10-13), I show that the same results

hold when controlling for GDP per-capita and when using total production network mea-

sures that include imported intermediates.

Table 2
Herfindahl and Production Network Structure

(1) (2) (3) (4)

VARIABLES logHHIkT logHHIkT logHHIkT logHHIkT

log Service -0.233*

(0.120)

log Density -0.552***

(0.118)

log Divers -0.603***

(0.125)

log Outdegrees 1.265***

(0.293)

Observations 126 126 126 126

Adjusted R-squared 0.041 0.229 0.205 0.273

Note: This table presents an OLS regression using the log Herfindahl index of sales shares as the depen-

dent variable. The independent variables describe each country’s production network structure and the

service share. The sample is divided into three sub-periods: 1970-1995, 1996-2005, and 2006-2014. Ro-

bust standard errors in parentheses. *** Significant at the 1-percent level; ** Significant at the 5-percent

level; * Significant at the 10-percent level.

Empirical Observation 2: GDP growth volatility declines with production network

diversification.

Volatility is measured using the standard deviation of GDP growth for each sub-

11



period. Table 3 illustrates the relationship among volatility, production network diversifi-

cation, and the service share. There is a strong negative relationship between production

network diversification and GDP growth volatility. Table 3 also shows that—consistent

with the previous literature—volatility increases with the HHI of sectoral sales shares

(Gabaix (2011) and Carvalho and Gabaix (2013)) and the concentration of Outdegrees

(Acemoglu et al. (2012)) but decreases with the service share of the economy (Carvalho

and Gabaix (2013) and Moro (2015)). The same results hold when controlling for GDP

per-capita and when using total production network measures that include imported

goods (see Tables 11, 14, and 15 in Appendix A).

Table 3
Volatility and Production Network Structure

(1) (2) (3) (4) (5)

VARIABLES logV olkT logV olkT logV olkT logV olkT logV olkT

log HHI 0.524***

(0.141)

log Service -0.522**

(0.241)

log Density -0.621**

(0.245)

log Divers -0.646**

(0.274)

log Outdegrees 0.775*

(0.406)

Observations 126 126 126 126 126

Adjusted R-squared 0.042 0.036 0.046 0.036 0.011

Note: This table presents an OLS regression using real GDP growth volatility as the dependent variable.

The independent variables describe each country’s domestic production network structure, the HHI of

sectoral sales shares, the service share, and the interaction between production network diversification and

the service share. The sample is divided into three sub-periods: 1970-1995, 1996-2005, and 2006-2014.

Robust standard errors in parentheses. *** Significant at the 1-percent level; ** Significant at the 5-percent

level; * Significant at the 10-percent level.

Overall, the facts presented in this section contribute to understanding the drivers of

countries’ HHI of sales shares and macroeconomic volatility. While these facts support

the predictions in Gabaix (2011), Acemoglu et al. (2012), Carvalho and Gabaix (2013),

and Moro (2015), they also pose a challenge to existing multisector models with inter-

sectoral linkages. The existing literature predicts no relationship between production
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network diversification and aggregate volatility. Therefore, the next section aims to give

economic interpretation to the cross-country facts presented in this section.

3 The model economy

The model economy in this paper extends the model in Acemoglu et al. (2012) to allow

for general CES production technologies, as in Atalay (2017), Carvalho et al. (2016), and

Baqaee and Farhi (2019). Unlike the aforementioned papers, this paper highlights the

theoretical link between production network diversification and volatility, via the exis-

tence of a cost of complexity in the bundle of intermediates, which operates when the

elasticity of substitution between labor and intermediates is non-unitary.

Firms

There are N sectors, each of which has a continuum of homogeneous firms that behave

competitively. The CES technology of firms in sector j is:16

Qj = Zj
(
ajL

εQ−1
εQ

j + (1− aj)M
εQ−1
εQ

j

) εQ
εQ−1

, (4)

where the intermediate input bundle is

Mj =
( N∑
i=1

ωijM
εM−1
εM
ij

) εM
εM−1

. (5)

The output of the representative firm in sector j is denoted by Qj . Zj is total factor

productivity; Lj is labor; Mj is the intermediate input bundle of sector j; and Mij is the

amount of intermediates that sector j purchases from sector i. The parameter aj repre-

sents how important labor is in the total value of production. The element ωij reflects

the importance of sector i as an input supplier to sector j. Therefore, the square matrix

Ω—of dimension N and typical element ωij—represents the input-output structure of

the economy. Note that when εM = 1, ωij is also the observed cost share of intermediates

from sector i in sector’s j total intermediate expenditure.

The elasticity of substitution between labor and intermediates is denoted by εQ. The

elasticity of substitution among material varieties is εM .

Households

The representative household maximizes utility

16This is the original CES production technology derived by Arrow et al. (1961).
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U (C1, ...,CN ) =
( N∑
j=1

βjC
εD−1
εD
j

) εD
εD−1 , (6)

subject to the budget constraint

wL̄+
N∑
j=1

πj =
N∑
j=1

PjCj , (7)

where Cj is the consumption of sector j’s output. The consumption shares βj satisfy∑N
j=1βj = 1. The elasticity of substitution between goods from different sectors is εD . In

the household budget constraint, L̄ is labor supply (inelastically supplied); πj is profit

from firms in sector j; w is the wage rate; and Pj is the price of sector j’s good.

Definition 1 (Competitive Equilibrium) A decentralized competitive equilibrium is a set of
prices {w, (Pj)Nj } and allocations {(Cj ,Qj ,Mj ,Lj)

N
j }, {(Mij)

N
ij } such that, for a given vector of

sectoral productivity shocks {Zj}Nj=1 and prices:

• the representative consumer maximizes utility (6) subject to the budget constraint (7);

• firms maximize profits; and

• the goods and labor markets clear:

Qj = Cj +
N∑
i=1

Mji ,

L̄ =
N∑
j=1

Lj .

Notation

Let β, Z, and a be the N × 1 vector of consumption shares, the N × 1 vector of sectoral

productivities, and the N × 1 vector containing the importance of labor in each sector’s

technology, respectively. An expression e ◦ f , where e and f are vectors of the same

dimension, should be interpreted as an element-by-element multiplication (Hadamard

product). An expression ef should be interpreted as an element-wise exponent.

3.1 The network amplification

I study the general model’s implications for the relationship between the network struc-

ture and aggregate GDP. The next proposition establishes the relationship between the
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network structure and sectoral centrality. Sector j’s centrality is defined by the GDP

effect of a productivity shock to sector j (Zj). Also, define Γ̃ as the N by N matrix of

model-implied intermediate input-output shares, where an element {Γ̃ }ij = γ̃ij represents

the cost share of intermediate input expenses from sector i in sector j’s gross output.

Proposition 1 Assume that εQ , 1, εD = 1, Zj = 1 for all j, and a labor endowment L̄ = 1.

(i) When εM = εQ, the vector of sectoral centrality, as well as the vector of sectoral sales
shares, is

s = [I − Γ̃ ]−1β = [I − P 1−εQ ◦
(
(P )εQ−11′

)′
◦
(
((1− a)1′)′ ◦Ω

)εQ]−1β, (8)

while the vector of sectoral prices is

P 1−εQ = [I −
(
(1− a)εQ1′ ◦Ω′εQ

)
]−1(aεQ),

(ii) When εM = 1, the vector of sectoral network centrality, also the vector of sectoral sales
shares, is

s = [I − Γ̃ ]−1β = [I − (P ◦ (1− a)εQ1′)′ ◦Ω]−1β, (9)

where P =
(
P
PM

)εQ−1
and the jth element of PM is PMj =

∏N
i=1

(
Pi
ωij

)ωij
. The vector of

sectoral prices are

(1− εQ) ◦ logP = log
(
aεQ ◦+(1− a)εQ ◦ exp[(1− εQ) ◦ (Ω′ logP − diag(Ω′ logΩ))]

)
.

Proof: See Appendix B.

Proposition 1 extends the results in Acemoglu et al. (2012). Sectoral centrality (or

influence) is determined by how interconnected a sector is with the rest of the economy,

which is summarized by the vector of extended Leontief inverse elements in Eq. (8). The

extended Leontief inverse depends on the model-implied intermediate input shares γ̃ij ,

which, in turn, depend on the input-output structure Ω, the elasticity εQ, and the vector

of distribution parameters a. Note that, as implied by Hulten (1978), up to a first order,

the vector of sectoral centrality is also equal to the vector of sectoral sales shares.

To directly link the predictions of the model to the empirical evidence presented in

Section 2, I now formally study the relationship among the production network structure,

the HHI of sectoral sales shares, and GDP volatility, emphasizing the role of production

network diversification. Assume that sectoral productivity follows a random walk:
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logZjt = log Z̄ + logZjt−1 +κjt, (10)

where the productivity shock κ is normally distributed with mean zero and standard

deviation σj . The term Z̄ is the steady-state level of technology, assumed to be common

across sectors.

Proposition 2 Define σGDP the volatility of the log change of real GDP. Assume that εQ , 1;
εD = 1; steady-state sectoral productivity is Z̄ = 1 for all j; and a labor endowment L̄ = 1.
Assume that sectoral productivity shocks κjt are independent and have a volatility of σj . Then,
up to a first order,

(i) when εQ = εM , 1, the volatility of the log change of GDP is:

σGDP =

√√√√ N∑
j=1

(
[I − P 1−εQ ◦

(
(P εQ−11′)′ ◦

(
((1− a)1′)′ ◦Ω

)εQ]−1β)jσ
2
j , (11)

(ii) when εQ , 1 and εM = 1, the volatility of the log change of GDP is:

σGDP =

√√√√ N∑
j=1

(
[I − (P ◦ (1− a)εQ1′)′ ◦Ω]−1β)jσ

2
j , (12)

where P is defined in Proposition 1.

Proof: See Appendix B.

Proposition 2 shows that GDP growth volatility is determined by the HHI index of

extended Leontief inverse elements in Proposition 1. By the Hulten theorem, aggregate

volatility is also equal to the HHI index of sectoral sales shares. In the next section,

I study the role of production network diversification embedded in Proposition 1 and

Proposition 2.

The role of production diversification

To better examine the role of production diversification, I analyze two symmetric net-

works. In symmetric networks, the matrix Ω, which represents the network structure of

the economy, displays homogeneous row sums (first-order outdegree). One useful feature

of these networks is that—within network and given common sectoral a, εQ, and εM—

sectoral prices are the same across sectors. In this case, the vector of sectoral centrality in

Proposition 1, part i) becomes
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s = [I −
(
((1− a)1′)′ ◦Ω

)εQ]−1β,

while the vector of sectoral centrality in Proposition 1, part ii) becomes

s = [I − (Divers1−εQ ◦ (1− a)εQ1′)′ ◦Ω]−1β,

in which an element i of the vector Divers is Diversi =
∏N
j=1ω

−ωji
ji . This sectoral diver-

sification measure corresponds to the one used in Section 2, Eq. (3), for the case when

εM = 1. We can see that when εQ > 1, higher production diversification reduces sectoral

centrality.

I define the following symmetric networks:

Ωsparse =


0 1 0

0 0 1

1 0 0

 and Ωdenser


1/2 1/2 0

0 0 1

1/2 1/2 0

 .
Assume that εM = 1, a = [0.6,0.6,0.6] and β = [1/3,1/3,1/3] are common across net-

works. According to Proposition 1, part ii), when εQ = 1.2, the vector of sectoral centrali-

ties is

ssparse = [0.50,0.50,0.50] sdenser = [0.47,0.48,0.49],

while when εQ = 0.8, we have

ssparse = [0.64,0.64,0.64] sdenser = [0.73,0.71,0.68].

We can see that the denser network displays lower sectoral centralities when interme-

diates and labor are substitute inputs. However, when intermediates and labor are com-

plement inputs the denser network displays larger sectoral centralities instead.17 The

reason, which I explain in more detail in the next section, is the existence of a cost of

complexity in the bundle of intermediates. When εQ > 1, diversified firms can use more

labor to compensate for the complexity of the bundle, which then reduces their inter-

mediate input share and, therefore, their sales share. On the other hand, when εQ < 1,

diversified firms cannot fully compensate for the complexity of the bundle, which then

increases their intermediate input share and sales share.

It is interesting to examine the network effects. In the denser network, sector 1 is

the only sector providing intermediates to two sectors and using intermediates from two

sectors. Therefore, besides its own complexity effect, the fact that other sectors demand

17The same result holds with εQ = εM , 1 (Proposition 1, part i)). I use Proposition 1, part ii) to highlight
that the key elasticity is εQ, as opposed to εM .
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less (more) when εQ > 1 (εQ < 1) further reduces (increases) sector 1’s size. For example,

when εQ > 1, the other downstream complex sector (sector 2) uses fewer intermediates

from sector 1, implying that sector 1 is the smallest sector in equilibrium. This effect is

not present for sector 2, as sector 2 supplies only to the non-diversified sector 3. The

opposite happens when εQ < 1.

These differences in network centralities also imply differences in volatilities. Based

on Proposition 2, when labor is easily substitutable with intermediates, the denser net-

work is less volatile. However, when inputs are complements, a denser network displays

larger sectoral centralities and, therefore, higher volatility.

Note that, as Dupor (1999) and Acemoglu et al. (2012) predict, when εQ = 1, both

networks behave the same. In fact, when εQ = 1, we have

ssparse = [0.56,0.56,0.56] sdenser = [0.56,0.56,0.56].

Two symmetric networks that differ only in terms of their production diversification

display the same sectoral centralities and aggregate volatility.

3.2 Cost of Complexity

To understand the mechanism by which production network diversification affects shocks

propagation, it is instructive to examine the cost of complexity embedded in Equation

(5). For the sake of exposition, and to compare the results of this paper with the implied

results from other papers, I generalize Equation (5) as follows:

Mj =
( N∑
i=1

ω
%M
ij M

εM−1
εM
ij

) εM
εM−1

, (13)

where the new parameter %M controls the so-called cost of complexity. Recall that %M = 1

in standard CES production functions (as in Eq. 5). To clearly observe the trade-off
between a concentrated intermediate input bundle versus a diversified one, one can com-

pare a firm in sector j using only one intermediate input in production versus a firm in

sector j using all of the N intermediate inputs available in production (diversified firm).

In the first case, ωij = 1 for the main input and ωkj = 0 for all k , i. The diversified firm,

instead, has ωij = 1/N for all i.

Suppose, also, that for the non-diversified firm, we have Mij =M1 > 0 and Mkj = 0 for

all k , i, while for the diversified firm, we have Mij = M2 = 1
NM1 for all i. Equation (13)

indicates that firm 1’s intermediate input bundle is equal toM1
j =M1. On the other hand,

the intermediate input bundle of the diversified firm is
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M2
j = (ω%M1j ·M

ρM
2 + ...+ω%MNj ·M

ρM
2 )1/ρM ,

where ρM = εM−1
εM

. Using the assumption of fully diversified input-output weights (ωij =
1
N for all i) and that M2 = 1

NM1, we obtain

M2
j =

(( 1
N

)%MM
ρM
2 N

)1/ρM =M2N
1−%M
ρM =M1N

1−%M−ρM
ρM .

We can see that when 1−%M−ρM
ρM

= 0, the concentrated bundle firm and the completely

diversified firm produce exactly the same (M1). This is the case in the implicit normal-

ization case %M = 1−ρM = 1
εM

. There exists a cost of complexity in the bundle of interme-

diates whenever 1−%M−ρM
ρM

< 0. In this case, the firm with the diversified bundle produces

M2
j = M1N

1−%M−ρM
ρM smaller than M1 (when N > 1). More generally, a cost of complexity

exists (1−%M−ρM
ρM

< 0) when

%M >
1
εM

when εM > 1,

and

%M <
1
εM

when εM < 1.

In any case, regardless of the value of εM , the standard CES production function (%M =

1) meets both conditions above and implies a cost of complexity in the intermediate input

bundle. Note that exactly the same complexity cost exists when εM = 1 (see Appendix C).

To link production diversification with production complexity, it is useful to think of

an example. Consider the production of educational services. In some countries, schools

and universities offer educational services using few intermediate input types (e.g., pa-

per, blackboard, and chalk) in large quantities (concentrated bundle), while in other

countries, educational services are more sophisticated and require more intermediate in-

put types (e.g., paper, blackboard, chalk, projectors, microphones, iPads, Apple Pens,

and learning soft-wares.) in relatively smaller amounts (diversified bundle). Therefore,

a more-diversified production network is also a network that produces more-complex

goods.

The role of εQ

The cost of complexity manifests in the relative price of the intermediate input bundle

PMj /Pj , which can have important effects when εQ is non-unitary. In symmetric networks,

in which sectoral prices Pj are the same across sectors, the intermediate input price index

of the simple bundle firm (ωij = 1 and ωlk = 0 for (l,k) , (i, j)) is
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PM,1j

Pj
=

1
Pj

( N∑
i=1

ωεMij P
1−εM
i

) 1
1−εM =

Pi
Pj

( N∑
i=1

ωεMij

) 1
1−εM =Divers1j = 1,

while for the diversified firm,

PM,2j

Pj
=

1
Pj

( N∑
i=1

ωεMij P
1−εM
i

) 1
1−εM =

Pi
Pj

( N∑
i=1

ωεMij

) 1
1−εM =Divers2j =N.

Higher production diversification of firm 2 implies a higher relative cost of the inter-

mediate input bundle. We can see the implications of this complexity cost in the optimal-

ity conditions for Mj :

PMj Mj

PjQj
= (1− aj)εQ

( PMj
ZjPj

)1−εQ
. (14)

Given aj , Zj , when firms use the bundle of intermediates and labor as gross substitutes

(εQ > 1), firms in a denser network are able to use more labor to compensate for the more

complex production process. Hence, a denser network displays smaller sectors with a

lower intermediate input share, which then mitigate the effect of sectoral shocks along

the production chain, as implied by Proposition 1. When firms have low production

flexibility (εQ < 1), in equilibrium, a denser network displays larger intermediate shares

and larger sectors, which then amplify the effect of sectoral shocks and increase volatility.

Relationship to the literature

Atalay (2017) and Carvalho et al. (2016) also build a multisector model with CES tech-

nologies. While the authors focus on a different question, these two studies assume the

knife-edge case of %M = 1/εM . This assumption is an implicit normalization that eases the

calibration of the distribution parameters. However, as seen above it eliminates the role

of production network diversification by linking the model implied intermediate input

share with the distribution parameter 1− a, entirely (as in the Cobb-Douglas case).

Baqaee and Farhi (2019) also build a production network model with general CES

technologies. The authors focus on understanding what features of the network shape

the change in sales shares, as opposed to the sales share level. Baqaee and Farhi (2019)

use normalized-CES technologies, which also ease calibration by pinning down the in-

termediate input share entirely by 1 − a (at the normalization point), leaving no role for

production diversification.

Therefore, the normalized CES technologies in Atalay (2017), Carvalho et al. (2016),

and Baqaee and Farhi (2019) are observationally equivalent to a production function with

a cost of complexity, if we only consider factor shares. The empirical difference arises in
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the prediction that there is a specific relationship between equilibrium observed inter-

mediate shares and production diversification which comes out of the cost of complexity.

Such a relationship could also be rationalized by a normalized CES, in reduced-form

through the distribution parameter, but without explanation.

Finally, Acemoglu and Azar (2020) develop a model of an endogenous production

network to study the role of network density in economic growth. The CES technology

used in Acemoglu and Azar (2020) follows Equation (5) (with %M = 1) and defines Mij =

AijM̃ij , where Aij is the input-specific productivity and M̃ij the quantity of the input

used. Therefore, the authors have a cost of complexity in the bundle of intermediates,

in efficiency unit terms (Mij = AijM̃ij). In their set-up, when firms adopt more varieties

(more-diversified intermediate input bundle), they consider the input productivity Aij
and also that the overall gain in the new diversified bundle defies the cost of complexity.

4 Testing the model implications with sectoral data

This section has three goals. First, it aims to estimate the elasticities of substitution be-

tween inputs (εM and εQ). Second, it assesses the relationship between sectoral interme-

diate input diversification and the intermediate input share. Third, it studies production

diversification in service sectors.

4.1 Estimation of elasticities

To estimate the elasticities, I follow Atalay (2017) and use the model’s implied cost min-

imization condition for inputs. While Atalay (2017) uses the implicitly normalized CES,

instead of the original Arrow et al. (1961) CES, both models have the following implied

equation for log changes in intermediate input shares (see details in Appendix E)

∆ log
(
PitMijt

PjtQjt

)
= (εM − 1)∆ log

PMjtPit
+ (εQ − 1)∆ log

 PjtPMjt
+ (εQ − 1)∆ logZjt, (15)

where the elasticity between intermediates (εM) is pinned down by changes in the relative

price between the intermediate input bundle price and the price of a given intermediate

input (PMj /Pi). The elasticity between labor and intermediates (εQ) is pinned down by

changes in the relative price of sectoral output and the price of the bundle (Pj /P
M
j ).

The empirical counterpart of Eq. (15) is:

∆ log
(
PitMijt

PjtQjt

)
= γij +α∆ log

PMjtPit
+ β∆ log

 PjtPMjt
+ νijt, (16)
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where γij is a buyer-seller fixed effect that aims to control for unobserved time-invariant

intermediate-input trade partner relationships. The elasticity between intermediates is

εM = 1 + α, while the elasticity between value-added and intermediates is εQ = 1 + β.

The error term is denoted by νijt. Estimating Equation (16) via OLS would yield biased

coefficients due to the endogeneity of sectoral prices. Sectoral productivities (Zj) are part

of the error term νijt and are correlated with sectoral prices (Pj , Pi , P
M
j ).

Therefore, I use military spending and the input-output structure to create three in-

struments for sectoral prices (see Atalay (2017) and Miranda-Pinto and Young (2019) for

more details). Since the instruments are relevant to the United States, I assume that sec-

toral technologies in the U.S are similar to sectoral technologies elsewhere. I use BEA

annual input-output data on sectoral prices and intermediate shares. The data contain 66

non-government sectors of the economy and cover the period 1997-2018.18

Guided by Miranda-Pinto and Young (2019), I allow for the elasticities to differ across

sectors service and non-service sectors. Service sectors are sectors 6 and 27-66 in Table 9.

This classification is consistent with the service-sector classification in Section 2 (sectors

19, 21-33 in the OECD data in Table 8). Non-service sectors represent the rest of the

economy (sectors 1-5 and 7-26 in Table 9 and sectors 1-18 and 20 in the OECD data in

Table 8).

Table 4 reports the estimated IV elasticities for all sectors, for non-service sectors,

and for service sectors. The instruments are strong, indicated by a large Cragg-Donald F

statistic of weak identification in each column. The first stage coefficients are also consis-

tent with military spending working as a demand shifter. For example, the instrument

for Pj is positively correlated with ∆ log
(
Pjt
PMjt

)
, indicating that increased demand from the

military to sector j tends to increase the price of sector j. The same applies for the rela-

tionship between the instruments for PMj and Pi .

The second-stage results in column 1 of Table 4 are similar to findings by Atalay

(2017). Note that the null hypothesis is that production elasticities are unitary (e.g.,

H0 : εQ − 1 = 0). Under the assumption of homogeneous production elasticity across sec-

tors, the elasticity of substitution between different intermediates is close to zero, while

the elasticity of substitution between labor and intermediates is statistically not different

from one.19 However, as in Miranda-Pinto and Young (2019), important differences arise

when we relax the assumption of homogeneous elasticities across sectors. Non-service

sectors display very low substitutability between intermediates, εM ≈ 0, and unitary elas-

ticity between intermediates and labor, εQ ≈ 1. On the other hand, service sectors are

18For each sector, I keep the top 25 intermediate goods’ supplier sectors. The results are similar when
using the top 20 or 30 suppliers.

19While the point estimate of εM is negative (-0.1), the upper-end value of the 95 percent confidence
interval of εM is 0.35
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significantly more flexible in production. In particular, service sectors display εM ≈ 1

and a point estimate of εQ of 3.38.20

Table 4
Estimated Elasticities

(1) (2) (3)

Second stage All Non-services Services

εM − 1 -1.10*** -1.23*** -0.45

(0.232) (0.228) (0.591)

εQ − 1 0.34 -0.38 2.38**

(0.539) (0.490) (0.927)

First stage ∆ log
(
PMjt
Pit

)
P IVj -0.47 -5.19*** 0.52

(0.399) (0.918) (0.403)

PM,IVj 8.45*** 17.82*** 3.95***

(0.57) (1.33) (0.572)

P IVi -5.58*** -9.91*** -3.30***

(0.389) (0.879) (0.386)

F statistic 125.41 94.16 30.31

First stage ∆ log
(
Pjt
PMjt

)
P IVj 2.33*** 6.57*** 0.40**

(0.220) (0.536) (0.201)

PM,IVj -3.93*** -8.82*** -2.61***

(0.317) (0.778) (0.284)

P IVi 0.06 0.13 0.22**

(0.214) (0.513) (0.192)

F statistic 76.54 59.52 49.92

Observations 32,980 12,500 20,480

Cragg-Donald F Statistic 52.63r 36.24r 24.06r

Note: This table reports the estimated coefficients of Eq. (16), using IV and military spending instruments.

In the row labeled Cragg-Donald Statistic, the superscript “r” indicates that the test for a weak instrument

is rejected at the 10-percent threshold. Standard errors are reported in parentheses. *** Significant at the

1-percent level; ** Significant at the 5-percent level; * Significant at the 10-percent level.

4.2 Sectoral diversification and intermediate input shares

In this section, I use cross-country sectoral data to study whether production diversifi-

cation is associated with the intermediate input share as predicted by the model. The

20The 95 percent confidence interval of service sectors εQ is [1.56,5.2].
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logarithm of model-implied intermediate input share in Equation (14), around Zj = 1 for

all j, is:

log(
PjM

M
j

PjQj
) = εQ log(1− aj) + (1− εQ) log(PMj /Pj), (17)

where the second term in Eq. (17) can become zero for two reasons: i) because εQ = 1;

or ii) because %M = 1/εM , in which case, PMj = Pj for all j. In these cases, the model-

implied intermediate input share is determined entirely by the distribution parameter

(1 − aj). As discussed in Section 3, production diversification affects the relative price of

the intermediate input bundle (PMj /Pj). To better illustrate this relationship, and for the

sake of exposition, assume that εM = 1 (which is, indeed, accurate for service sectors in

Table 4 ). In this case, the second term in Eq. 17 can be decomposed into

log
PMj
Pj

= − logPj +
N∑
i=1

ωij logPi −
N∑
i=1

ωij logωij ,

implying

log(
PjM

M
j

PjQj
) = εQ log(1−aj)+(1−εQ)

(
−logPj+

N∑
i=1

ωij logPi
)
+(1−εQ)(−

N∑
i=1

ωij logωij). (18)

In symmetric networks, the term
(
− logPj +

∑N
i=1ωij logPi

)
is zero, and production

diversification, captured by logDiversj = −
∑N
i=1ωij logωij , accounts for differences in

the intermediate input share, given aj and εQ. In non-symmetric networks, the model-

implied prices depend on the input-output structure Ω (as seen in Proposition 1).

Thus, investigating the causal link between sectoral production diversification and

intermediate input shares is complex due to unobserved distribution parameter (aj) and

sectoral prices. Therefore, the goal of this section is simply to provide suggestive evi-

dence of the mechanism by looking at the correlation between production diversification

and intermediate input share. I use cross-country sectoral data to estimate the following

empirical specification of Eq. (18):

log
(PjktMM

jkt

PjktQjkt

)
= αj + βk + η logDiversjkt + εjkt, (19)

where αj and βk are sector and country fixed-effects that control for unobserved sectoral

characteristics—in this case, the distribution parameter (1 − ajk) and the term − logPj +∑N
i=1ωij logPi (if time-invariant). The key coefficient to be estimated is η, which under-

lines the relationship between sectoral production diversification and the intermediate
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input share. For sectors with εQ > 1, η is expected to be negative.

The estimation of Eq. (19) without sectoral fixed-effects uses cross-sectoral hetero-

geneity in Diversjk to identify the relationship between diversification and intermediate

input shares.21 On the other hand, the estimation of Eq. (19) using sectoral fixed-effects

uses time variation in Diversjkt to capture the relationship between Diversjkt and inter-

mediate input shares. In the regression, I proxy for production diversification using

logDiversj = log(
N∑
i=1

ωεMij )
1

1−εM , (20)

with εM = 0.5.22

Table 5 reports the results of estimating Eq. (19) for service and non-service sectors.

Column 1 reports a negative cross-sectional relationship between production diversifica-

tion and the intermediate input share (significant at the 95% confidence level). Column

2 shows that this relationship is non-existent in non-service sectors. Columns 3 and 4

control for sectoral fixed-effects and show the same results. The negative relationship be-

tween production diversification and intermediate input shares is observed only within

service sectors. Overall, the results in Tables 4 and 5 support the mechanism of the model:

in high εQ sectors, production diversification is associated with lower intermediate input

shares.

Table 5
Intermediate Input Shares and Production Diversification

(1) (2) (3) (4)

VARIABLES Services Non-services Services Non-services

log Divers -0.129** -0.003 -0.186*** 0.044

(0.052) (0.040) (0.047) (0.050)

Observations 1,764 2,394 1,764 2,394

Adjusted R-squared 0.206 0.378 0.554 0.539

Country FE Yes Yes Yes Yes

Sector FE No No Yes Yes

Note: This table presents the regression results of estimating Eq. (19). The dependent variable is the log of

sectoral total intermediate input shares. Divers is measured using Eq. (20), with εM = 0.5. Standard errors

are in parentheses. *** Significant at the 1-percent level; ** Significant at the 5-percent level; * Significant

at the 10-percent level.

21Note that omitted variable bias causes the OLS estimate to be inconsistent
22The same results hold when using the diversification measure implied by εM = 1, logDiversj =
−
∑N
i=1ωij logωij . The same is also true when using εM ≈ 0 for non-service sectors and εM = 1 for service

sectors.
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4.3 Production Diversification of Service Sectors

This final section shows that the well-documented fact that service sectors display lower

intermediate input shares (Moro (2015)) can be explained, in part, by the fact that service

sectors display high production diversification, as measured by Divers. Column 1 of Ta-

ble 6 confirms that service sectors have a smaller intermediate input share. Columns

2 and 3 show that, consistent with the results in Table 1, service sectors have more-

diversified intermediate input bundles. These results indicate that, through the lens of

the model, high elasticity and high diversification can help explain why service sectors

display a lower intermediate input share and, therefore, why service-oriented countries

are less volatile.

Table 6
Production Diversification and Service Share

(1) (2) (3)

VARIABLES logPMj Mj /PjQj logDivers(εM=0.5) logDivers(εM=1)

Services -0.325*** 0.016* 0.038***

(0.012) (0.009) (0.014)

Observations 4,158 4,158 4,158

Adjusted R-squared 0.343 0.315 0.069

Country FE Yes Yes Yes

Sector FE No No No

Note: Column 1 presents the estimated coefficient of a service-sector dummy as the independent variable

and log intermediate input shares as dependent variable, controlling for country fixed-effects. Columns

2 and 3 present the estimated coefficient of a service-sector dummy as the independent variable and log

Divers as the dependent variable for different values of εM and controlling for country fixed-effects.

5 Quantitative assessment

In this section, I calibrate the model using each country’s input-output matrix. The goal is

to study the quantitative predictions of the model regarding the empirical cross-country

correlations among production diversification, service share, and volatility documented

in Section 2.

Calibration

The previous section showed that the value of εM is not relevant to understanding the

role of production diversification. Therefore, to simplify the computational burden and
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to focus on the role played by production diversification when εQ is non-unitary and

different than εM , I set εM = 1. I then calibrate εQ using the U.S. estimates in Table 4 for

the service and non-service sectors. In particular, the benchmark calibration assumes that

εQ = 1 for non-service sectors and εQ = 1.56 for service sectors, which is the lower-end

value of the 95-percent confidence interval for εQ in column 3. Alternatively, I reestimate

sectoral εQ under the assumption that εM = 1 (for all sectors). The results of estimating

Equation (16) under the imposition of εM = 1 are reported in Table 16 of Appendix A. The

95 percent confidence intervals for εQ are: εQ ∈ [1.55,3.49] for all sectors; εQ ∈ [0.98,2.71]

for non-service sectors ; and εQ ∈ [2.06,5.3] for service sectors.

The countries’ intermediate input shares ωij are matched to the observed shares in

2005 using the OECD input-output tables at a level of disaggregation of 33 sectors. The

elasticity of substitution between consumption goods εD is assumed to be unitary. There-

fore, the consumption shares βj are calibrated to be the observed consumption shares in

the 2005 input-output tables for each country.

The calibration of the distribution parameter aj , which captures the importance of

labor in sectoral production, deserves more discussion. With Cobb-Douglas production

functions, the distribution parameter (1−aj) equals the observed intermediate input share

in sector j. However, when εQ is non-unitary, and there is a role for production diversifi-

cation in determining intermediate input shares, the distribution parameter differs from

the observed shares. Therefore, given εQ and given Ω, I calibrate aj using an iterative

procedure that matches the model-implied sectoral intermediate input shares with the

observed ones.

The process for sectoral productivity follows a random walk as in Equation (10), in

which shocks κjt are independent and normally distributed with zero mean and variance

σ2
j .23 I calibrate the variance for sectoral productivity following Horvath (2000), who

uses the Jorgenson dataset to estimate sectoral productivities for the U.S. sectors at a level

of disaggregation of 36 sectors. The estimates apply to annual productivity; thus, they

represent a good benchmark for my analysis, as the empirical results in Section 2 are at an

annual frequency and at a level of disaggregation of 33 sectors. The persistence of sectoral

productivities estimated in Horvath (2000) is high and does not differ much across sec-

tors. However, the author finds important differences in the volatility of sectoral shocks

σj across sectors, especially between manufacturing and services. To focus on the role of

the service share coming from their lower intermediate input share, the benchmark cal-

ibration assumes σ = 0.02 for service sectors and non-service sectors. To account for the

heterogeneity in sectoral shocks’ volatility documented in Horvath (2000), I also consider

23The steady-state value of productivity Zj = Z̄ (for all j) is irrelevant given that I study the volatility of
GDP growth.
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the case in which non-service sectors are more volatile and have σ = 0.04.24

I simulate series of sectoral productivities and aggregate GDP for every country in

the sample. I then reestimate the cross-sectional relationship among the model’s implied

GDP volatility, the input-output structure, and the service share. In particular, I simu-

late series of size T for each economy S times.25 With the implied path for real GDP, I

calculate each country’s times series of real GDP growth. I then calculate the standard

deviation of growth for each economy and simulation. The countries’ average volatility

of GDP growth over the S simulations is the dependent variable. The independent vari-

ables are the model implied service share, network density, production diversification,

and outdegree concentration.

Production Network Structure and Volatility

Table 7 reports the data and the model-implied relationship between production net-

work structure and volatility. Column 1 reports the empirical relationships from Table

3 in Section 2. Columns 2 and 3 show the model-implied correlations under the as-

sumption that service and non-service sector shocks have the same volatility. In column

2, I report the model-implied regression coefficients when εQ of service sectors (εsQ) is

1.56 and εQ of non-service sectors (εnsQ ) is one. The model is quantitatively successful

in matching the observed relationship between production diversification and volatility.

While in the data a 10% increase in network density (diversification) is associated with

a 6.21% (6.46%) decline in volatility, the model in column 2 predicts that the same 10%

increase in network density (diversification) is associated with a 5.24% (5.49%) reduc-

tion in volatility. Moreover, the model is able to match the positive relationship between

volatility and the concentration of sectoral outdegrees. The data suggest that a 10% in-

crease in the concentration of outdegrees is associated with a 7.75% increase in volatility,

while the model predicts a 10.09% increase in volatility.

Column 3 of Table 7 reports the model-implied relationship between production di-

versification and volatility when all elasticities are one. As predicted by the model, when

the elasticity of substitution between labor and intermediates is one, heterogeneity in pro-

duction network diversification across countries generates no cross-country differences in

macroeconomic volatility. The only production network structure that shapes sales shares

and volatility is the concentration of outdegrees (see the last row of column 3).

24Koren and Tenreyro (2007) find similar results for the volatility of sectoral shocks. Service sectors tend
to be less volatile than non-service sectors.

25The baseline results use T = 50 years and S = 50 simulations.
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Service Share and Volatility

The model-implied relationship between service shares and volatility deserves additional

discussion. To guide the discussion, I decompose the expression for aggregate volatility

in Equation (12), Proposition 2, following the approach in Carvalho and Gabaix (2013):

σ =

√√√√ N∑
j=1

( Sj
GDPj

GDPj
GDP

)2
σ2
j , (21)

where Sj represent sector j’s sales. Service sectors are different from non-service sectors

in all three aspects highlighted in Equation (21). Services have lower sales to value added

shares (
Sj

GDPj
). Service sectors represent a larger fraction of GDP (

GDPj
GDP ). Finally, services

receive less-volatile shocks σj . Columns 2 and 3 of Table 7 shut down the effect from

heterogeneous volatility of shocks highlighted in Carvalho and Gabaix (2013). As in Moro

(2015), the negative relationship between the service shares and volatility is driven by the

fact that services have smaller intermediate input shares and, therefore, smaller sales to

value added shares. The key difference between column 2 and column 3 is the role of

production diversification. When εsQ > 1, service sectors display smaller intermediate

input shares and smaller sales to value added shares because of their higher production

diversification (see Tables 1 and 6). Thus, the negative relationship between the service

shares and volatility in column 2 is explained by the mechanism highlighted in Section 3.

On the other hand, when εQ = 1 for all sectors (column 3), there is no role for production

diversification, and the negative relationship between service shares and volatility is a

result of the implied heterogeneity in the calibrated distribution parameter aj , necessary

to match the observed intermediate input share of services.

Finally, in column 4 of Table 7, I calibrate the model, incorporating the fact that ser-

vices receive less-volatile shocks. Following Horvath (2000), I assume that σj = 0.02 for

service sectors and σj = 0.04 for non-service sectors. In this case, the model is more suc-

cessful in quantitatively matching the relationship between services share and volatility

across countries. While columns 2 and 3 predict that a 10% increase in service shares

reduces volatility by 1.9%-2.7%, column 4 predicts a 6.55% reduction in volatility, which

is closer to the 5.22% decline observed in the cross-country facts.

6 Conclusion

This paper provides cross-country evidence on the importance of input-output structure

in accounting for the heterogeneity in cross-country HHI of sales shares and macroeco-

nomic volatility. I show that higher production network diversification is associated with
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Table 7
Production Network Structure, Service Shares, and Volatility

(1) (2) (3) (4)

VARIABLES Data σs = σns σs = σns σs < σns
εsQ = 1.56 εsQ = 1 εsQ = 1.56

log Service -0.522** -0.199** -0.272*** -0.655***

(0.241) (0.0793) (0.055) (0.128)

log Density -0.621** -0.524** -0.0945 -0.788***

(0.245) (0.200) (0.0635) (0.248)

log Divers -0.646** -0.549*** -0.112 -0.900***

(0.274) (0.178) (0.0723) (0.295)

log Outdegree 0.775* 1.089*** 1.049*** 1.646***

(0.406) (0.192) (0.0551) (0.349)

Note: This table presents the data and model implied OLS regression results for the relationship between

production structure and volatility. All regressions include a constant. The dependent variable is GDP

growth volatility, be it observed (column 1) or simulated from the model (columns 2-4). The model calibra-

tion assumes that εM = 1 for all sectors and εQ = 1 for non-service sectors (εnsQ ). The independent variables

describe each country’s domestic production network structure and the service shares. Robust standard er-

rors in parentheses. *** Significant at the 1-percent level; ** Significant at the 5-percent level; * Significant

at the 10-percent level.

lower HHI of sales shares and lower GDP volatility. These results stand in contrast to the

prediction of existing multisector models with production linkages.

To explain these empirical observations I build a multisector model with general CES

technologies that can account for these facts. I find that the production network diversifi-

cation has a differential effect on volatility, depending on the flexibility in production—in

particular, the elasticity of substitution between intermediates and labor. The existence

of a cost of complexity in producing with more-diversified set of suppliers implies that a

more-diversified production network mitigates shocks and reduces volatility when labor

and intermediates are substitute inputs.

Using U.S data, I show that service sectors have an elasticity between labor and in-

termediates that is larger than one and larger than in non-service sectors. I then use

cross-country sectoral data to show that, as implied by the model’s mechanism, the diver-

sification of the intermediate input bundle of flexible service sectors has a negative effect

on the observed intermediate input share.

I calibrate the model to match each country’s production network structure to show

that, similar to the empirical results, the regressions using data simulated from the model

yield a negative relationship between diversification and volatility. The model can also

generate the observed negative relationship between volatility and service shares, with-
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out relying on smaller shocks affecting services. This result is explained by the higher

production diversification in service sectors, which, together with the higher flexibility in

services, leads to lower intermediate input shares and aggregate volatility.
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Appendix A

Table 8
OECD sectors ISIC Revision 3

Sector number Sector name

1 Agriculture, hunting, forestry and fishing

2 Mining and quarrying

3 Food products, beverages and tobacco

4 Textiles, textile products, leather and footwear

5 Wood and products of wood and cork

6 Pulp, paper, paper products, printing and publishing

7 Coke, refined petroleum products and nuclear fuel

8 Chemicals and chemical products

9 Rubber and plastics products

10 Other non-metallic mineral products

11 Basic metals

12 Fabricated metal products

13 Machinery and equipment, nec

14 Computer, Electronic and optical equipment

15 Electrical machinery and apparatus, nec

16 Motor vehicles, trailers and semi-trailers

17 Other transport equipment

18 Manufacturing nec; recycling

19 Electricity, gas and water supply

20 Construction

21 Wholesale and retail trade; repairs

22 Hotels and restaurants

23 Transport and storage

24 Post and telecommunications

25 Financial intermediation

26 Real estate activities

27 Renting of machinery and equipment

28 Computer and related activities

29 R&D and other business activities

30 Public administration and defence; compulsory social security

31 Education

32 Health and social work

33 Other community, social and personal services
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Table 9
Sectors BEA- OECD

BEA sector Iocode OECD sector BEA Sector Name

1  111CA 1 Farms
2  113FF 1 Forestry, fishing, and related activities
3  211 2 Oil and gas extraction
4  212 2 Mining, except oil and gas
5  213 2 Support activities for mining
6  22 19 Utilities
7  23 20 Construction
8  321 5 Wood products
9  327 10 Nonmetallic mineral products
10  331 11 Primary metals
11  332 12 Fabricated metal products
12  333 13 Machinery
13  334 14 Computer and electronic products
14  335 15 Electrical equipment, appliances, and components
15  3361MV 16 Motor vehicles, bodies and trailers, and parts
16  3364OT 17 Other transportation equipment
17  337 18 Furniture and related products
18  339 18 Miscellaneous manufacturing
19  311FT 3 Food and beverage and tobacco products
20  313TT 4 Textile mills and textile product mills
21  315AL 4 Apparel and leather and allied products
22  322 6 Paper products
23  323 6 Printing and related support activities
24  324 7 Petroleum and coal products
25  325 8 Chemical products
26  326 9 Plastics and rubber products
27  42 21 Wholesale trade
28  441 21 Motor vehicle and parts dealers
29  445 21 Food and beverage stores
30  452 21 General merchandise stores
31  4A0 21 Other retail
32  481 23 Air transportation
33  482 23 Rail transportation
34  483 23 Water transportation
35  484 23 Truck transportation
36  485 23 Transit and ground passenger transportation
37  486 23 Pipeline transportation
38  487OS 23 Other transportation and support activities
39  493 23 Warehousing and storage
40  511 6 Publishing industries, except internet 
41  512 33 Motion picture and sound recording industries
42  513 24 Broadcasting and telecommunications
43  514 28 Data processing, internet pub., and other inf. services
44  521CI 25 Federal Reserve banks, credit interm., and rel. act.
45  523 25 Securities, commodity contracts, and investments
46  524 25 Insurance carriers and related activities
47  525 25 Funds, trusts, and other financial vehicles
48 HS 26 Housing Services
49 ORE 26 Other Real Estate
50  532RL 27 Rental and leasing services and lessors of int. assets
51  5411 29 Legal services
52  5415 28 Computer systems design and related services
53  5412OP 29 Miscellaneous professional, scientific, and tech. Serv.
54  55 29 Management of companies and enterprises
55  561 29 Administrative and support services
56  562 18 Waste management and remediation services
57  61 31 Educational services
58  621 32 Ambulatory health care services
59  622 32 Hospitals
60  623 32 Nursing and residential care facilities
61  624 32 Social assistance
62  711AS 33 Performing arts, spectator sports, museums
63  713 33 Amusements, gambling, and recreation industries
64  721 22 Accommodation
65  722 22 Food services and drinking places
66  81 33 Other services, except government
67 GFGD 30 Federal general government (defense)
68 GFGN 30 Federal general government (nondefense)
69  GFE 30 Federal government enterprises
70  GSLG 30 State and local general government
71  GSLE 30 State and local government enterprises
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Domestic production network structure and HHI/volatility controlling

for GDP per-capita

Table 10
Herfindahl and Production Structure

(1) (2) (3) (4)

VARIABLES logHHIkT logHHIkT logHHIkT logHHIkT

log GDPpc 0.088*** 0.050 0.051 0.105***

(0.031) (0.031) (0.031) (0.032)

log Service -0.377***

(0.091)

log Density -0.564***

(0.118)

log Divers -0.620***

(0.127)

log Outdegrees 1.554***

(0.282)

Observations 126 126 126 126

Adjusted R-squared 0.105 0.252 0.230 0.383

Note: This table presents an OLS regression using the log Herfindahl index of sales shares as the dependent

variable. The independent variables describe each country domestic production structure and GDP per-

capita. The sample is divided into three sub-periods: 1970-1995, 1996-2005, and 2006-2014. Robust

standard errors in parentheses.

36



Table 11
Volatility and Production Structure

(1) (2) (3) (4) (5)

VARIABLES logV olkT logV olkT logV olkT logV olkT logV olkT

log GDPpc -0.249*** -0.198*** -0.213*** -0.213*** -0.215***

(0.059) (0.059) (0.059) (0.059) (0.064)

log HHI 0.642***

(0.141)

log Service -0.199

(0.245)

log Density -0.568***

(0.212)

log Divers -0.574**

(0.242)

log Outdegrees 0.184

(0.500)

Observations 126 126 126 126 126

Adjusted R-squared 0.164 0.094 0.135 0.124 0.090

Note: This table presents an OLS regression using real GDP growth as the dependent variable. The inde-

pendent variables describe each country domestic production structure and GDP per-capita. The sample is

divided into three sub-periods: 1970-1995, 1996-2005, and 2006-2014. Robust standard errors in paren-

theses.
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Total production network structure and HHI/Volatility

Table 12
Herfindahl and Production Structure (total)

(1) (2) (3) (4)

VARIABLES logHHIkT logHHIkT logHHIkT logHHIkT

log Service -0.233*

(0.120)

log Density -0.372***

(0.133)

log Divers -0.610***

(0.139)

log Outdegrees 1.169***

(0.159)

Observations 126 126 126 126

Adjusted R-squared 0.041 0.044 0.112 0.340

Note: This table presents an OLS regression using the log Herfindahl index of sales shares as the depen-

dent variable. The independent variables describe each country total production structure, that include

imported inputs and goods. The sample is divided into three sub-periods: 1970-1995, 1996-2005, and

2006-2014. Robust standard errors in parentheses.
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Table 13
Herfindahl and Production Structure (total)

(1) (2) (3) (4)

VARIABLES logHHIkT logHHIkT logHHIkT logHHIkT

log GDPpc 0.088*** 0.060 0.057 0.067**

(0.031) (0.037) (0.035) (0.032)

log Service -0.377***

(0.091)

log Density -0.453***

(0.119)

log Divers -0.661***

(0.143)

log Outdegrees 1.235***

(0.148)

Observations 126 126 126 126

Adjusted R-squared 0.105 0.076 0.142 0.386

Note: This table presents an OLS regression using the log Herfindahl index of sales shares as the depen-

dent variable. The independent variables describe each country total production structure, that include

imported inputs and goods, and GDP per-capita. The sample is divided into three sub-periods: 1970-1995,

1996-2005, and 2006-2014. Robust standard errors in parentheses.

39



Table 14
Volatility and Production Structure (total)

(1) (2) (3) (4) (5)

VARIABLES logV olkT logV olkT logV olkT logV olkT logV olkT

log HHI 0.524***

(0.141)

log Service -0.522**

(0.241)

log Density -0.829**

(0.349)

log Divers -0.899**

(0.352)

log Outdegrees 1.045***

(0.335)

Observations 126 126 126 126 126

Adjusted R-squared 0.042 0.036 0.038 0.039 0.042

Note: This table presents an OLS regression using real GDP growth volatility as the dependent variable.

The independent variables describe each country total production structure that includes imported inputs

and goods. The sample is divided into three sub-periods: 1970-1995, 1996-2005, and 2006-2014. Robust

standard errors in parentheses.
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Table 15
Volatility and Production Structure (total)

(1) (2) (3) (4) (5)

VARIABLES logV olkT logV olkT logV olkT logV olkT logV olkT

log GDPpc -0.249*** -0.198*** -0.199*** -0.205*** -0.205***

(0.059) (0.059) (0.058) (0.058) (0.058)

log HHI 0.642***

(0.141)

log Service -0.199

(0.245)

log Density -0.561*

(0.289)

log Divers -0.716**

(0.325)

log Outdegrees 0.846**

(0.354)

Observations 126 126 126 126 126

Adjusted R-squared 0.164 0.094 0.110 0.119 0.122

Note: This table presents an OLS regression using real GDP growth volatility as the dependent variable.

The independent variables describe each country total production structure, that includes imported inputs

and goods, and GDP per-capita. The sample is divided into three sub-periods: 1970-1995, 1996-2005, and

2006-2014. Robust standard errors in parentheses.

41



Table 16
Estimated Elasticities Assuming εM = 1

(1) (2) (3)

Second stage All Non-services Services

εQ − 1 1.52*** 0.84* 2.68**

(0.493) (0.442) (0.828)

First stage ∆ log
(
Pjt
PMjt

)
P IVj 2.33*** 6.55*** 0.39**

(0.220) (0.527) (0.200)

PM,IVj -3.93*** -8.72*** -2.40***

(0.317) (0.655) (0.227)

Cragg-Donald F Statistic 114.81r 89.26r 74.18r

Observations 32,980 12,500 20,480

Note: This table reports the estimated coefficients of Eq. (16) under the assumption of εM = 1 for all

sectors. Military spending is used to construct instruments for Pj and PMj . In the row labeled Cragg-

Donald Statistic, the superscript “r” indicates that the test for a weak instrument is rejected at the 10

percent threshold. Standard errors are reported in parentheses. *** Significant at the 1 percent level; **

Significant at the 5 percent level; * Significant at the 10 percent level.
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Appendix B

Proposition 1

Hulten 1978

For completeness, I re-derive Hulten (1978)’s theorem. This is a frictionless economy and

the first welfare theorem holds. Therefore, I solve the planner’s problem. The planner

maximizes household utility subject to the output and labor resource constraints and

sectoral technologies.

L = C(C1, ...,CN ) +
N∑
j=1

µj(Qj −Cj −
N∑
i=1

Mji) +φ(L̄−
N∑
j

Lj).

Where

Qj = Zj
(
ajL

εQ−1
εQ

j + (1− aj) +M
εQ−1
εQ

j

) εQ
εQ−1

,

and

Mj =
( N∑
i=1

M
εM−1
εM
ij

) εM
εM−1

.

By envelope theorem, at the optimum C(C∗j , ...,C
∗), we have that

∂C∗

∂Zj
= µ∗j

∂Q∗j
∂Zj

= µ∗j
Q∗j
Zj

which evaluated at the steady state Zj = 1 (for all j) yields

∂GDP ∗

∂Zj
= µ∗jQ

∗
j ,

or

∂ logGDP ∗

∂Zj
=
µ∗jQ

∗
j

GDP
,

The sectoral Lagrange multiplier µj equals sectoral price Pj in competitive equilib-

rium. This is trivial to show by comparing the planner first order condition for Mij with

the competitive equilibrium first order condition for Mij . Therefore, up to a first order,

the aggregate effect of a sectoral shock Zj is determined by sectoral sales PjQj .

Proposition 1 i) (εQ = εM , 1)

Let us define ρQ = εQ−1
εQ

and ρM = εM−1
εM

. The firms’ optimality conditions for inputs are
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Lj : PjZ
ρQ
j

(Qj
Lj

)1−ρQ
aj = w (22)

Mj : PjZ
ρQ
j

(Qj
Mj

)1−ρQ
(1− aj) = PMj (23)

Mji : PiZ
ρQ
i Q

1−ρQ
i M

ρQ−ρM
i M

ρM−1
ji (1− ai)ωji = Pj . (24)

Multiplying sectoral market clearing condition for sector j by sectoral price Pj we

obtain

Sj = PjCj +
N∑
i=1

PjMji ,

where Sj is sectoral sales. Let’s use the household optimal consumption share for each

good (with εD = 1 we have PjCj = βjPcC) and rearrange the firm optimality condition for

Mij in (24) (assuming εQ = εM)

PjM
1−ρQ
ji = Z

ρQ
i (1− ai)ωjiPiQ

1−ρQ
i ,

PjMji =
(Pi
Pj

)εQ−1
Z
εQ−1
i ((1− ai)ωji)εQPiQi ,

to get

Sj = βjPcC + P
1−εQ
j

N∑
i=1

P
εQ−1
i Z

εQ−1
i ((1− ai)ωji)εQSi .

Sj
PcC

= βj + P
1−εQ
j

N∑
i=1

P
εQ−1
i Z

εQ−1
i ((1− ai)ωji)εQ

Si
PcC

,

which proves Proposition 1 part i)

s = [I − P 1−εQ ◦
(
(Z ◦ P )εQ−11′

)′
◦
(
((1− a)1′)′ ◦Ω

)εQ]−1β. (25)

To solve for sectoral prices, I express the production function of firms in sector j as:

Z
−ρQ
j = aj

( Lj
Qj

)ρQ
+ (1− aj)

(Mj

Qj

)ρQ
, (26)

which combined with the FONC for labor in Eq. (22)

PjZ
ρQ
j

(Qj
Lj

)1−ρQ
aj = w
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( Lj
Qj

)ρQ = (ajPj)
εQ−1Z

ρ2
Q

1−ρQ
j

( Lj
Qj

)ρQ
= (
ajPj
w

)εQ−1Z

(εQ−1)2

εQ

j

( Lj
Qj

)ρQ
=

(ajPj
w

)εQ−1
Z

(εQ−1)2

εQ

j

and the FONC for intermediates Mj in Eq. (23)

PjZ
ρQ
j

(Qj
Mj

)1−ρQ
(1− aj) = PMj

(Mj

Qj

)1−ρQ =
( Pj
PMj

)
(1− aj)Z

ρQ
j

(Mj

Qj

)(1−ρQ)
ρQ

1−ρQ =
(( Pj
PMj

)
(1− aj)Z

ρQ
j

) ρQ
1−ρQ

(Mj

Qj

)ρQ =
(( Pj
PMj

)
(1− aj)

)εQ−1
Z

(εQ−1)2

εQ

j ,

yields (replacing back into Eq. (26))

Z
−ρQ
j = aj

((ajPj
w

)εQ−1
Z

(εQ−1)2

εQ

j

)
+ (1− aj)

((( Pj
PMj

)
(1− aj)

)εQ−1
Z

(εQ−1)2

εQ

j

)
,

P
1−εQ
j = Z

εQ−1
j a

εQ
j w

1−εQ +Z
εQ−1
j (1− aj)εQ(PMj )1−εQ . (27)

To solve for the intermediate input bundle price PMj , we solve the firms’ cost minimiz-

ing problem. Firms minimize intermediates expenditure, subject to technology.

L =
N∑
i=1

PiMij +λ
(
(Mj −

( N∑
i=1

ωijM
ρM
ij

)1/ρM
)
.

In competitive markets, the marginal cost of the bundle (λ) equals the price of the bundle

(PMj ). Taking first order conditions with respect to Mij , we obtain:

∂L
∂Mij

= Pi − PMj
( N∑
i=1

ωijM
ρM
ij

) 1−ρM
ρM

ωijM
ρM−1
ij = 0

∂L
∂Mij

= Pi − PMj M
1−ρM
j ωijM

ρM−1
ij = 0
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∂L
∂Mij

= Pi = PMj

(Mj

Mij

)1−ρM
ωij ,

implying

M
ρM
ij =

(PMj
Pi

)εM−1
ωεM−1
ij M

ρM
j .

Replacing the previous equation into the intermediate bundle technologyMj =
(∑N

i=1ωijM
ρM
ij

)1/ρM

yields

PMj =
( N∑
i=1

ωεMij P
1−εM
i

) 1
1−εM

. (28)

Plugging Equation (28) into the price Equation (27) yields

P
1−εQ
j = Z

εQ−1
j a

εQ
j w

1−εQ +Z
εQ−1
j (1− aj)εQ

( N∑
i=1

ωεMij P
1−εM
i

) 1−εQ
1−εM

.

Assuming εQ = εM and that the numeraire of the economy is the wage rate w, we have

P
1−εQ
j = Z

εQ−1
j a

εQ
j +Z

εQ−1
j (1− aj)εQ

( N∑
i=1

ω
εQ
ij P

1−εQ
i

)
,

which in matrix form becomes

P 1−εQ = ZεQ−1 ◦ aεQ +ZεQ−1 ◦
((

(1− a)εQ1′ ◦Ω′εQ
)
P 1−εQ

)
,

and assuming Zj = 1 for all j, proves Proposition 1 i)

P 1−εQ = [I −
(
(1− a)εQ1′ ◦Ω′εQ

)
]−1(aεQ). (29)

Proposition 1 ii) εQ , 1 and εM = 1

The firms’ FONC are

Lj : PjZ
ρQ
j

(Qj
Lj

)1−ρQ
aj = w (30)

Mj : PjZ
ρQ
j

(Qj
Mj

)1−ρQ
(1− aj) = PMj (31)

Mji : PiZ
ρQ
i

(Qi
Mi

)1−ρQ(1− ai)ωji
Mi

Mji
= Pj . (32)

Rearranging and plugging Eq. (31) into Eq. (32) yields
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PjMji = PiQi(1− ai)εQωji
(ZiPi
PMi

)εQ−1
, (33)

where PMi =
∏N
j=1

(
Pj
ωji

)ωji
(proved at the end of this section).

To obtain sales shares, we multiply sectoral market clearing condition for sector j by

sectoral price Pj to obtain

Sj = PjCj +
N∑
i=1

PjMji .

Use the modified firm optimality condition for Mji in Eq. (33) and the household

optimality condition PjCj = βjPcC (for εD = 1) to obtain

Sj = βjPcC +
N∑
i=1

(1− ai)εQωji
(ZiPi
PMi

)εQ−1
Si ,

sj = βj +
N∑
i=1

(1− ai)εQωji
(ZiPi
PMi

)εQ−1
si ,

s = β +
(
(P ◦ (1− a)εQ1′)′ ◦Ω

)
s

s = [I − (P ◦ (1− a)εQ1′)′ ◦Ω]−1β, (34)

where s is the vector of sales to GDP shares and P =
(
Z◦P
PM

)εQ−1
.

To obtain sectoral prices, I express the production function of firms in sector j as:

Z
−ρQ
j = aj

( Lj
Qj

)ρQ
+ (1− aj)

(Mj

Qj

)ρQ
, (35)

which combined with the FONC for labor in Eq. (30) yields

PjZ
ρQ
j

(Qj
Lj

)1−ρQ
aj = w,

( Lj
Qj

)ρQ = (ajPj)
εQ−1Z

ρ2
Q

1−ρQ
j ,

( Lj
Qj

)ρQ
= (
ajPj
w

)εQ−1Z

(εQ−1)2

εQ

j ,

and the FONC for intermediates in Eq. (31)
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PjZ
ρQ
j

(Qj
Mj

)1−ρQ
(1− aj) = PMj

(Mj

Qj

)1−ρQ =
( Pj
PMj

)
(1− aj)Z

ρQ
j

(Mj

Qj

)ρQ =
(( Pj
PMj

)
(1− aj)Z

ρQ
j

) ρQ
1−ρQ

(Mj

Qj

)ρQ =
(( Pj
PMj

)
(1− aj)

)εQ−1
Z

(εQ−1)2

εQ

j ,

which we replace into (35) to obtain

Z
−ρQ
j = aj

((ajPj
w

)εQ−1
Z

(εQ−1)2

εQ

j

)
+ (1− aj)

((( Pj
PMj

)
(1− aj)

)εQ−1
Z

(εQ−1)2

εQ

j

)
,

P
1−εQ
j = Z

εQ−1
j a

εQ
j w

1−εQ +Z
εQ−1
j (1− aj)εQ(PMj )1−εQ . (36)

The intermediate input bundle price PMj is obtained from the firms’ cost minimizing

problem.

L =
N∑
i=1

PiMij +λj
(
Mj −

N∏
i=1

M
ωij
ij

)
.

In competitive markets, the marginal cost of the bundle (λj) equals the price of the bundle

(PMj ). Taking first order conditions with respect to Mij , we obtain:

∂L
∂Mij

= Pi − PMj ωij
Mj

Mij
= 0

implying

Mij =ωijMj

PMj
Pi
.

Replacing the previous equation into the production bundle technology

Mj =
N∏
i=1

(
ωijMj

PMj
Pi

)ωij
,

Mj = (MjP
M
j )

∑N
i=1ωij

N∏
i=1

(ωij
Pi

)ωij
,
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and using the fact that
∑N
i=1 = 1 yields

PMj =
N∏
i=1

( Pi
ωij

)ωij
Plugging this equation into the price equation (36) yields

P
1−εQ
j = Z

εQ−1
j a

εQ
j w

1−εQ +Z
εQ−1
j (1− aj)εQ

( N∏
i=1

( Pi
ωij

)ωij )1−εQ
,

which in matrix form becomes

(1−εQ)◦logP = (εQ−1)◦logZ+log
(
aεQ◦w1−εQ+(1−a)εQ◦exp[(1−εQ)◦(Ω′ logP−diag(Ω′ logΩ))]

)
,

where diag(A) converts the diagonal of the square matrix A into a vector the same

dimension.

Proposition 2

Volatility

Real GDP in the economy can be approximated, up to a first order,

around the steady state Ȳ = Y (Z̄1, ..., Z̄N ) as

Y ≈ Ȳ +
N∑
j=1

∂Y
∂Zj

(Zj − Z̄),

or

logY ≈ log Ȳ +
N∑
j=1

∂ logY
∂ logZj

(logZj − log Z̄).

To obtain GDP growth volatility take log difference

logYt − logYt−1 ≈
N∑
j=1

∂ logY
∂ logZj

(logZjt − logZjt−1),

and use Hulten’s theorem ( ∂ logY
∂ logZj

= sj) to get

logYt − logYt−1 ≈
N∑
j=1

sj(logZjt − logZjt−1),
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where sj is the sales share to GDP ratio of sector j. Assuming that sectoral produc-

tivity follow a random walk logZjt = log Z̄ + logZjt−1 + κjt, in which κjt is normal i.i.d.

distributed with mean zero and variance σj we have

logYt − logYt−1 ≈
N∑
j=1

sjκjt.

Taking the variance of GDP growth (logYt − logYt−1) we obtain

σ2
GDP ≈

N∑
j=1

s2j V ar(κjt) =
N∑
j=1

s2j σ
2
j ,

which combined with the results in Proposition 1 yields Proposition 2.

Appendix C

In this Appendix, I discuss the existence of a cost of complexity in standard Cobb-Douglas

production technologies. When εM = 1, The bundle of intermediates is:

Mj =
N∏
i=1

( 1
ωij

)ωij (1−%M )
M
ωij
ij ,

We can use the limit of Mij → 0 (for all non-used inputs) or simply use Mij = 0 (for

all non-used inputs) and assume that 00 = 1 and (1
0 )0 = 1. As before assume that the firm

with one input usesM1 units of the input, while the diversified firm usesM2 = 1
NM1 <M1

units of each input. In either case, we have:

M1
j =M1

MN
j =

( 1
1/N

)(1/N )(1−%M )
M1/N

2 ...
( 1
1/N

)(1/N )(1−%M )
M1/N

2 ,

which using the fact M2 = 1
NM1 yields

MN
j =

M1

N %M
.

When %M = 1 we recover the standard Cobb-Douglas production technology. In this

case, the diversified bundle firm produces less (M1
N ) than the concentrated bundle firm

(M1) as a results of the complexity cost. The case in which %M = 0 is equivalent to the

case in which %M = 1/εM (when εM , 1), where there is no complexity cost.
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Appendix D

In this Appendix, I describe how I obtain a global solution of the model for the quantita-

tive section of the paper.

εQ , 1 and εM = 1

Real GDP in this economy is logGDP = − logPc. In addition, as εD = 1 we have Pc =∏N
j=1

(βj
Pj

)βj . Assuming εM = 1, Equation (27) becomes:

P
1−εQj
j = Z

εQj−1

j

(
a
εQj
j w

1−εQj + (1− aj)
εQj

( N∏
i=1

( Pi
ωij

)ωij )1−εQj )
which in matrices becomes

(1−εQ)◦logP = (εQ−1)◦logZ+log
(
aεQ+(1−a)εQ◦exp[(1−εQ)◦(Ω′ logP −diag(Ω′ logΩ))]

)
.

For a given path for
(
{Zj}Nj=1

)T
t=1

and the calibrated values of a, Ω, and εQ, I solve the

non-linear system of equations for prices using the Cobb-Douglas equilibrium prices as

initial values. Then, we find real GDP as:

logGDP = − logPc =
N∑
j=1

βj log
(βj
Pj

)
.

The model implied network density and diversification are calculated based on sec-

tion 2, using the observed matrix Ω. The model implied service share is calculated from

the model’s first order conditions for labor

wLj = PjQj(ZjPj)
εQ−1a

εQ
j ,

evaluated at the steady state value of Zj = Z̄. From Proposition 1 ii), we obtain sales

(PjQj) and prices Pj used to obtain wLj = Lj (as wage is the numeraire).

Appendix E

We solve the cost minimization problem for firms in sector j. The Lagrangian of this

problem is (max - (cost))
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L = −wLj − PMj Mj −λ
(
Qj −Zj

[
ajL

ρQ
j +

(
1− aj

)
M
ρQ
j

] 1
ρQ

)
(37)

The first-order necessary and sufficient conditions for Mj is

− PMj +λ
∂Qj
∂Mj

= 0. (38)

Rearranging, using the fact that
∂Qj
∂Mj

= Z
ρQ
j aj

(
Q
Mj

) 1
εQ and that in competitive markets

the marginal cost of production in sector j (λ1) is the price of good Pj , we have

PMj = PjZ
ρQ
j aj

(
Qj
Mj

) 1
εQ
. (39)

Raising the previous equation to the power of εQ, taking logs, and rearranging we obtain

log

PMjt Mjt

PjtQjt

 = εQ log
(
aj
)

+ (1− εQ) log

PMjtPjt
+ (εQ − 1)logZjt

∆ log

PMjt Mjt

PjtQjt

 = (1− εQ)∆ log

PMjtPjt
+ (εQ − 1)∆ logZjt (40)

Now, we minimize the cost of the intermediate input bundle
∑N
i=1 PiMij subject to

Mj =
(∑N

i=1ωijM
ρM
ij

) 1
ρM . The Lagrangian for this problem is

L = −
N∑
i=1

PiMij −λ2

Mj −
( N∑
i=1

ωijM
ρM
ij

) 1
ρM

 .
Taking first order conditions with respect to Mij , and using the fact that in competitive

markets, the marginal cost of the bundle (λ) equals its price (PMj )

− Pi + PMj
∂Mj

∂Mij
= −Pi + PMj M

1−ρM
j M

ρM−1
ij ωij = 0. (41)

which rearranged yields

∆ log

 PitMijt

PMjt Mjt

 = (1− εMj
)∆ log

 PitPMjt
 . (42)

Combining Equations (40) and (42) yields
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∆ log
(
PitMijt

PjtQjt

)
= (εM − 1)∆ log

PMjtPit
+ (εQ − 1)∆ log

 PjtPMjt
+ (εQ − 1)∆ logZjt. (43)
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